A Fast Version of the DES and a Password
Encryption Algorithm

Mait Bz'shop

July 1987
{Revised August 1988)

Research Institute for Advanced Computer Science
NASA Ames Research Center

RIACS Technical Report 87.18

NASA Cooperative Agreement Number NCC 2-398

A Fast Version of the DES and a Password Encryption
Algorithm

Mart Bishop

Research Institute for Advanced Computer Science
NASA Ames Research Center
Moffett Field, CA 94035
and
Department of Mathematics and Computer Science
Dartmouth College
Hanover, NH 03755

ABSTRACT

The Data Encryption Standard is used as the basis for the UNIX pass-
word encryption scheme. Some of the security of that scheme depends on
the speed of the implementation. This paper presents a mathematical for-
mulation of a fast implementation of the DES in software, discusses how
the mathematics can be translated into code, and then analyzes the UNIX
password scheme to show how these results can be used to implement it.
Experimental results are provided for several computers to show that the
given method speeds up the computation of a password by roughly 20
times {depending on the specific computer.)

1. Introduction

Passwords and encryption schemes are used to prevent unauthorized access to files’
and data as well as to deter break-ins to computer systems. The Numerical Aerodynamic
Simulator project at NASA’a Ames Rescarch Center administers approximately 40
UNIX-based{ computers on a local area network which is connected to both long-haul
networks and telephone lines. Password security is of paramount importance at this site
since, with knowledge of a secret password, unknown parties can gain access to indivi-
dual accounts and to the system as a whole.

This work was supported by NASA grant NCC 2-398 from the National Aeronautics and Space
Administration (NASA) to the Research Institute for Advanced Computer Science (RIACS). Pant
of the work was done while the author was at RIACS, and part while the author was at Dartmouth
This report has also been issued as PCS-TR88-138 by the Department of Mathematics and Com-
puter Science at Dartmouth College.

+UNIX is a registered trademark of AT&T Bell Laboratories,

-

For these reasons, it is desirable to have a password checking program to
examine encrypted passwords and determine whether they can be guessedi.
Such a program obtains a list of potential passwords, such as a list of words,
the user's names, initials, login name, and so forth, and encrypts each one
using additional information (called “the salt”) associated with the user whose
password is being tested. I the result matches the encrypted password (called
a “hit”), the password has been compromised and the user is requested to
change it.

On the surface, the UNIX password scheme appears to be quite secure [10]
It uses a variant of the Data Encryption Standard {11] to provide a one-way
encryption function. This function depends both on the password and on a
two-character salt, so in effect there are 4096 different possible encryption
functions. This is intended to discourage attacks i which the dictionary is
encrypted and compared to a list of passwords; if a list of 100 passwords each-
have a different salt, it wonld take about 220 days to test a dictionary of 25,000
words against the list. Of course, only encrypted passwords and their salts are
stored on line; when the user types his or her password, it is encrypted using
the salt associated with that user, and compared to the on line encrypted pass-
word. Validation occurs if there is a match.

Properties of the DES have been discussed in detail [8,9], for example.
Much analysis has been done to determine how best to implement the DES,
both in hardware [6,7] and software [6]. In these papers, and in some studies
of the DES algorithm itself [4,5], a number of useful transformations, all of
which show various strengths and weaknesses of the algorithm, are discussed
from the point of view of speeding up implementations.

In this paper, we describe these earlier results using mathematical nota-~
tion. After that, we shall discuss some practical hints for implementors, and
then analyze the UNIX password algorithm to see how using the salt and the
repeated application of the DES algorithm affects the analysis. More imple-
mentation hints will be given, and finally some timings of routines that embody
the hits will be discussed.

A word about notation. In both the theoretical and application sections
of this paper, certain operations occur very often. In all sections, - means
“bitwise negation”, & means “bitwise and”, | means “bitwise (inclusive) or”,
and @ means “bitwise exclusive or’”,

1 It would be even more desirable to do rigorous password checking when the user sets his or
her password. Unfortunately, to implement this would require changing vendor-supplied
software, and add to the maintenance burdens. Alse, when the new password programs
were installed, everyone would have to change their passwords to ensure they meet the new
(presumably more rigorous) standards; forcing users fo do this would cause serious prob-
lems.

2. Analysis of the DES Algorithm

The DES algorithm consists of a series of expansions, permutations, and
substitutions. In this section, # will represent an expansion (or contraction), #
a permutation, and o a substitution. The DES function uses a series of tables
to indicate how the operation is to take place; a subscript will indicate which
table is used by the operation. Some tables, such as the PC-1 table, indicate
both an expansion (in this case, a contraction) and a permutation. Strictly
speaking, such a table should be a subscript on the product of an expansion
and a permutation, that is (m)pcy; but this is confusing, so we shall just
represent this as lpeq ;.

2.1. Derivation of the Key Schedule
The DES first computes a “key schedule” of 16 elements from a 56 bit
key. Let the key be K. (Actually, X is 64 bits, but the first permutation dis-
cards § parity bits.) Then Iy, is applied:
KO = Tpe, K (1)
‘The next two steps are applied 16 times, the output of the first being the input
of the next set; { is the iteration number, beginning with 0. K¢ is divided
into two halves, each half is shifted left as indicated by the table LSH. (This
is really a permutation, so we shall write it as 77 ¢y .) Thus,
KO wem o KG-1 fori=1,.,.,16)
These intermediate keys are transformed by IHp., to generate a new element
of the key schedule k;:
ki =TpeKE fori=1,...,16 (3)
So, there are 16 elements k4, . . . , k4 of the key schedule.

Now consider equation (2). By iterating the recurrence and substituting
(1), we have

K = 7 oy KO = nf sy Tlpc 1K (4)
and so by (3) and (4),
ki =Tpc.yrisuK® = Mpeonf sy Upc. K 8)
Defining G; by G; = pe. o7t sy Upe.s (5) may be rewritten
ki =G,K -6

We shall refer to the set of G; as G; thatis, G ={G; |i=1,...,16}.

2.2, Encryption of the Message

Now let m =my - - - mg be the message to be encrypted. First an initial
permutation is apphed:

T(}mfl"'féd=7i}pm (7)

e

Divide the 64 bits of T, into two halves, ly=1,- - 15 and
ry==t3y** ' tg. Lhen, the next 16 steps are the same, the output of each

being used as the input 1o its successor. Forroundsi =0, ... ,15,
Lya=r - (8a)
iy =L @rpos(ng ry&k;) (8b)

Finally, the halves of the result T ¢ = l,47 16 are exchanged and the inverse
of the initial permutation is applied:

% = P (r 16l 16) ©)

Now, consider equations (8a) and (8b). Since both ; and r; are 32 bit
vectors, apply ng to both sides:

el =g (10a)
Ng Tiwr = Mg ;@mpog (e 1 60K;)) (10b)

As @ is a homomorphism from the group of bit vectors in the range of #g to
itself, the & may be taken outside the expansion, yielding o

Mg T = Mg L €ng mp o5 (g 1:OK;) (11)
Now define L; = g l; and R; = ngr;. By (10a) and (11),
Lisy=R;
Ri 41 =L;@®ng npos (R Ek;)
These imply

Li o = L;@®ng mp o5 (R; &K;) (12a)
R; 42 = R;@ng np o5 (R; 41Pk;)
= R;ng np o5 (L; Dng mp o (R; Dk;)Pk 41) (12b)
R; .o = R; @ng mp 05 (L 12Pk: 1) (13)
Define F, = ngnpog. Then (12a) and (13) become
Ljyo=L;®F »(R; ®k;) (14a)
Ri 2 =R, @F (L 12P%; 11) (14b)

Now consider (7). (14a) and (14b) require that 5zl and 5z rg be found,
so define ngx to be the expansion of a 64 bit vector to a 96 bit vector by split-
ting the vector in half and applying 1z to each half. Then to obtain Ly and

Ry, define T' = L gR; and
"= g Tpm
Defining Fy = nggmp, this becomes
T'=Fm (15)

-5.

Finally, look at (9). Exchanging the halves I 4 and r ;; may be treated as a
permutation 7y . Also, note that by definition L; and R; are in the range of
7, so both nglL; and nz'R; exist and are unique. Let ngi(L 6R1s)
represent the result of concatenating ng'L ¢ and 73Ry (This is actually the
inverse of the g discussed above.) Combining all this with (9), we have

x = 7jpmy gk (L 16R 16)
Defining F5 = mp'my n5} , this becomes
x =F3(L16R 16) (16)

3. Application of the Analysis

With this analysis, we are ready to implement a fast version of the DES
algorithm. We will consider several aspects of the mathematics. The first is
representation. How are the functions and bit strings to be stored?

The simplest representation of the data used in the DES algorithm is to
store one bit in each storage location (bvte or word); for example, since the
message 10 be encrypted or decrypted is 64 bits long, it would occupy 64
storage units, each being 0 or 1. This representation requires no bit opera-
tions to permute the data. Unfortunately it is quite inefficient in terms of
space and time; in space, because (usually) at least 8 bits can be stored in a
single storage unit, and in time, because it forces the algorithm to operate on
bits one by one. As an example of the effects of this restriction, the substitu-
tion function og, and hence the function F,, uses 8 sets of 6 adjacent bits
from the representation of R;. There are 16 rounds in which this is done, and
obtaining those sets of bits from the representation requires 48 memory
accesses, 5 left shifts and five logical ors, for a total of (48-+545)x8x16 = 7424
operations. Were each set of 6 bits stored in a single storage unit, obtaining
those sets would require one memory access per set, for a total of
1xX8x16 = 512 operations. Were 24 bits stored per storage unit, obtaining
those sets would require one memory access and one bit field extraction per
set, for a total of (141)x8%16 == 1024 operations.

For reasons that will shortly become clear, we chose to store bits as multi-
ples of 24, So, in a 32 bit per word machine, we store the 48 bit quantities L;
and R; in two words with 24 bits each; in a 64 bit per word machine, we store
them in one word with 48 bits each.

Using the mathematical analysis in the previous section, we rearranged the
key schedule computation and message transformation so that there are four
sets of combinations of permutations, expansions, and substitutions, We used
these four functions rather than 5, #p, mp, and og given in the tables in
Appendix L

Appendix I represents each of the permutations as a vector of numbers;
the number in the i position is the number of the bit of the input that will
occupy that position in the output, Hence, it seems natural to represent the
functions F;, 1 =1,2,3 and G in the same manner. However, since F» begins

-6 -

with a substitution, we shall for the moment only combine 7p and 7z, call this
Fomrr, and include the og later. The functions in Appendix 1l may be used to
compute Fy, Fopnr, Fq, and G the corresponding bit tables are in Appendix
III. Remember, the precomputation of G will produce 16 permutations, each
of which is applied to the key to get the key schedule.

Once this is done, another optimization becomes obvious. Since a per-
mutation is simply a function with inputs from a known domain, those func-
tions can be precomputed and stored in an array. Then computing the func-
tion during the running of the algorithm requires as many array indexing opera-
" tions as there are arguments fo the function. For example, F, takes as input
the 64 bit message and returns as output 96 bits, so ideally F, should be
precomputed and stored as an array of 2% elements of 96 bits.

This would probably use too much space and time on most computers.
So, we broke up the 64 bit message into 8 sets of 8 bits, and considered F, to
be a function of two arguments, the first being 8 bits from the message, and
the second being the position of the first argument within the 64 bit message.
We thus stored F, as an array of 8 arrays, one per position, of 2% words of 96
bits; given a machine with B bits per word, this uses

56 {2048 words if B = 32

8 e
X2 1B /24 b words = 11004 words if B = 64

This requires that the eight 96 bif vectors, each corresponding to a byte in the
first through eighth position, must be combined:

output ;= 0
fori:=1to 8do
output := output or fsublijjinput{i]};

To precompute F,, note that the input is a 96 bit vector and the output is
64 bits. In most implementations, this will be represented as eight 8 bit char-
acters. So, splitting Fj’s input into 16 sets of 6 bits, the total storage required
is

16><26><%f» characters = 8192 characters

Precomputing F, is a bit more complicated because the input of 48 bits is
run through a substitution. This function, og, is really eight substitution func-
tions oV, .. ., of¥, 0§l operating on the first 6 bits of the input, of? operat-
ing on the second 6 bits of the input, and so on. These substitution functions
are defined indeg;endentiy of each other, so to precompute F,, vary the input
to one of the of) and keep the input for all the others as 0. Apply that o) to
all 2 inputs, and then apply Foyr to the result. Hence, F, will have to be -
stored as an array of 8 arrays of 2° words of 48 bits; this requires

6 48 1024 words if B =32
X 5 atar Vo9 = | s12 words if B = 64

-7

Note this is really a rather small storage requirement.

Alas, the same is not true for the precomputation of G. The key is
divided into eight 8 bit groups, and one permutation per element of the key
schedule is needed; in short, G is really a set of 16 permutations. The output
of each of these 16 permutations is a word with 48 bits. So the storage
required is

. 48 65,536 words if B = 32
16X8x 2 i bag WOT% = 132,768 words if B = 64

For some machines, this is so large that the increase in system time due to
accessing the elements offsets the gain in user processing time. In such a case
it is better to precompute 7pc;, which requires

4096 words if B == 32

8 56 -
82X B /24 24 words = {2{}48 words if B =64
and Fpe.p, which requires

48 {2048 words if B =32

7 N e
S i bad VT = 1024 words if B =64

and do the left shifts as one operation if possible. To do this, recall that if the
56 bit KC) is stored in one word, the following operations split K into two
28 bit halves, shifts each half left one bit, and recombines them to give X (i+1).

KD = (K & —0x80000008000000) << 1)]
(K ©>27)& 0x10000001)) & OxEFEEEFFEEEFES

(where << and >> are left and right shifts, respectively.) Shifting two bits to
the left, and rearranging this to work on a 32 bit word machine, is left as an
exercise to the reader.

Incidentally, the way the functions were precomputed determined the
choice of the data representation. Because we had to access bits in groups of
6 while iterating, and in groups of 8 when applying F 5, the data representation
had to be a multiple of lcm(6,8) = 24 bits per word.

Now let us look in detail at the formulae we have derived. Using the con-
ventional formulation (8), 16 iterations are needed to compute L 1 and R,
Equation (14) requires only 8 iterations. This cuts the time required approxi-
mately in half; so, we should use the formulation in (14) to compute L 4 and
R 6.

As a second point, we described bow to precompute the function F, as
an array. Recall that the L; &k, ., and R;&¥k; are split into § groups of 6
bits, each group being the input to one of!), By combining the groups of bits
and ¢f), substantial speed can be gained. The penalty is that more space is
needed; if, for example, 12 bits is used rather than 6 bits, there are 4 groups
of 12 bits, and the number of words required is

12 48 32768 words if B =32
A rm s ag VoS = 16384 words if B = 64

-8 -

So, when we precomputed F,, we used as wide a data path as was feasible.

We can eliminate the cost of using some temporary storage if we
exclusive-or F4 into L, directly. Suppose ¢ and b were two bit numbers.
Then the first bit of @ @b depends only on the first bit of & and the first bit
of b, and the second bit of a &b depends only on the second bit of ¢ and the
second bit of b. Hence, P operates on bits independently of one another.
Combined with the associativity of €, this means that F, can be directly tbed
into L; or R; without a temporary variable; F» need not be saved in an inter-
mediate variable, and then Ged into L; or R;.

Now that we have dealt with the message-handling part of the formula-
tion, Rather than computing a key schedule and testing at each iteration
whether to use the nth element or the (16—n)th element, we shall compute
the key schedule for one direction, and reverse the elements at the end of the
computation if going in the other.

The key schedule {k; ji = 1,...,16} is used to encrypt and decrypt.
To encrypt, the k;s are used in the order ky, . . . , k4 and to decrypt, they are
used in the order k4 ... ,k;. The key schedule should be in the proper
order before the message is encrypted or decrypted to avoid 16 comparisons
and {possibly) 16 subtractions when transforming the message. Let us com-
pare the cost in time Tgpy of storing the key schedule in the proper order as
it is generated and the cost in time Tgyp of storing the key schedule in
encrypting order as it is generated and then reversing it at the end.

Let the probability that an encryption is to be done be Pgyc. lLet the
cost of a comparison operation be “c”, the cost of an indexing operation be

“i” and thé cost of an assignment be “a” Then assigning the keys in the

proper order costs
Teen = (16c 4+ 161+ 162)Pg -+ (16c 4161+ 16a)(1— Pg)
= (16¢+16i+16a)

Assigning the keys in encryption order and exchanging them after ail have
been computed requires

TEND s (10 -+ 16&)?5 - (IC -+ 161 “§'323)(1 WPE)
= ¢+ 161 +32a — (16i + 16a)(1 ~pg)

(No indexing for pg is required since the indices are constants, and the
addresses are therefore computed at compile time.) If pp = 0.5, then

Tenp = 0.5¢c+8i-+24a

which — assuming ¢ =a =i ~ means that Tgyp < Tgey, 50 if the probability
of encryption and decryption are the same, it is better to reorder the key
schedule at the end.

We will later bave occasion to run the DES algorithm when the probabil-
ity of encryption is 1. In this case,

Tgen = (16c+16i+16a) > (le+16a) = Tgnp

-0

So it is very definitely desirable to reorder after the key schedule has been
cormpuied.

Finally, we can take advantage of several features of the compiler and
underlying machine architecture. For example, we can unroll iterative loops
whenever possible, replacing a conditional test, an increment or decrement (or
addition or subtraction), and several memory accesses, since replacing the
loop variable with constants in the body of the loop allows the use of “‘quick”
or “immediate” mode, where the constant is stored in the instruction. Such
an access is considerably faster than accessing a memory location. When it is
too messy to eliminate an iterative loop, rather than incrementing the counter,
we will count down to (.. Most computers have an instruction which decre-
ments a counter and compares the result to 0 in one operation. Taking advan-
tage of this instruction decreases the number of memory accesses substantially,
as well as the number of mstructions to be executed.. Using pointers or con-
stants instead of indexing into an array also speeds up the computation; even
though an array access is semantically equivalent {o the use of a pointer, using
pointers to access n elements of an array sequentially results in one index
computation to initialize the pointer and n 1 additions, rather than »n index
computations. Finally, the specific code generated by the compiler for the tar-
get machine offers several possibilities. Some machines have slow bit field
extraction operations; on these machines, using shifting and masking to extract
bit fields may be faster. Other compilers use autoincrement address mode if
available. I so, it should be used to step through a sequence of arrays by
incrementing the pointer containing the base address of each element. If not,
use constants for the bases of the arrays; this will save an addition. (In fact,
the arrays storing the Fopyr’s are “fsub2_1{64], . . . , fsub2_8{64]” rather than
in one array “fsub2[8}[64], . . ., fsub2 8{64])". This way, if autoincrement
mode is used, the bases “fsub2 1,...,{sub2 8”7 are saved in another array
and a pointer used to access the bases. If autoincrement mode is not used,
the bases themselves replace the pointers.)

4. Analysis of the UNIX crypt(3) Algorithm

The UNIX password encryption algorithm is based on the DES algorithm
described in 2. A password, chosen from strings of one 10 eight characters
with characters from an alphabet consisting of the upper and lower case
letters, the digits, “/”, and “.”, is used as a key to encrypt the message O (that
is, the message of eight ASCII NULs.) However, the DES algorithm is repeated
25 times and the expansion 7z is altered.

Associated with each password is a two-character “salt”, with characters
chosen from the same alphabet as the password characters. This allows a pos-
sible 64x64 = 4096 = 2 salts. The two character salt is used to compute a
number 0<s < 4096; then, if the % bit of that number is set, elements / and
i+24 of the table for 5 are exchanged. Let this new permutation be 7.

Let w =wy;- - wy be a 32 bit vector; applying np to it gives a 48 bit
vector v =V, - - vug and applying 7g. to it gives another 48 bit vector
v =v'y- v Lets; - 545 be the binary representation of 5. From the

-10 -

way 1ng. is derived from np, it is clear that for k =1,...,12, if 5, =0,
v =V and Vi o =V g0 and if 5 =1, vp =V’ 90 and v gy =v",. Our
goal is to find a way of transforming v into v’ given 5 and nothing else.

Split v into two parts, v ...pq and V(ss...4q, Where

V..o24)=V1 ' Vog and Vs, .. 48 = Vys 0 Ve Similarly, split v’ into
two parts, V... and vigs...4, where vig... gy =V vy and
Vigs.. .48y =V's ' ' * Vigg Defme a 24 bit vectorm =m, - - - my, where
. §i ==} ifl§2
e = s =1 if i>12

Now, notice that viy...ogdom = (/1 vigy&(sy - - - 5§10+ - - 0) has those
bits of v(;... 5 which would be exchanged with the corresponding elements
of vi5... 45y, and all other bits are 0. Similarly, v(;. .. gk =vn has those bits
of v(1 ... o4 which are not to be exchanged, and all other bits are 0. So, to
compute v’ given v and s, first construct m as indicated and then:

Via.ca=0a. . &m)lves. . agdm) (172)
?’(25 oo 48y ("(25 R 43)&—‘1’72)i(V(l R 32)&??1) (17b)

Robert Baldwin [3] has derived an equivalent expression for v’ in terms of
v by noting that if bits v; and v; .4 differ, exchanging them is the same as
@ing them with 1. So, he suggests computing a mask S5 to be Fed with
V.. .ooay and ¥ g5, . 4 to achieve the effect of the salting:

SS ={a... u@ves. . .)dm (182)

Then,
1“(1. Ay =Va . .24)@38 (18b)
V5. 48 = V(5. .. agBSS {18¢c)

A more formal proof showing this is equivalent to (17) uses the following
two lemmmas:

LEMMA: a @ a&e)=(ak —~)
rroo¥F: By definition of &,
a Pladke yz={a & ~a ke))|(—adk (adke))

Now, as & Iis associative, —ad&{a&c)=(—ada)&c, which is always false.
Moreover, as —{adc)y=(—a)|(—c), by distributivity of & over | we have
adk ~{adc y={a&—a) adk —¢ y=a&k —c as claimed. QED.

LEMMA: a §(a @b Yke)=({a&k —c)|(b&e)
PROOF: As & distributes over &,
a D((a @D)de) = a Bl(ade)Abke)

Since @ is assoclative, this becomes

= (@ Plake)Y P(b&ke)

-11 -

But by the previous lemma,
= (a& —c YP(b&ke)
as claimed. QED.
We can now show
THEOREM: (17) and (18) are equivalent.

prOOF: Substitute 2 =v(..., b =V@z5...48), and ¢ =m in the preceding
lfemma. QED.

5, Application of the Analysis

Given this analysis, there are a few simplifications that can be used to
speed up the computation. First, recall that the UNIX password encryption
scheme calls the DES algorithm 25 times sequentially. Notice that
Fy=myFi*, so the left and right halves of the result of the iteration must be
swapped, but then can be immediately put back into the iteration. This saves
48 permutations. Following this train of thought, we do not need fo precom-
pute Fy, since the value returned by ¥, does not depend on the key schedule,
and hence not at all on the key (password); just on the message being
encrypted, This message is 0. Therefore, #,0 =0, so start the first iteration
with the 96 bit vector with all bits clear. Finally, the exchange of halves (that
is, the permutation 7y) may be completely eliminated by unrolling a loop.
This requires that the 25 iterations be done in 12 sets of 2, and one more, and
that in the second set the L; and R; be interchanged.

Two more changes are possible, but they only help under certain condi-
tions. First, suppose you will be encrypting p passwords all with the same
salt. Using (18), each of the 8 loops will take 4 extra instructions to process
the salt; these loops are repeated 25 times, so for each password to be
encrypted, handling the salt requires 800 extra instructions. Precomputing F,
F,, and F, using g+ would eliminate this overhead.

Now suppose these routines are being used to compare p passwords fo w
suspected cleartext passwords, I F, is applied in the encryption routine, it
must be applied w times; if F5! is applied to the list of encrypted passwords,
it need only be applied p times (actually, there is some extra overhead that is
negligible.) Presumably, both F5 and F3;1 are precomputed and so take
equally long to apply. Thus, if w < p, apply F5! to the list of encrypted
passwords, and omit the application of F; at the end of the encryption.

6. An Experiment

In order to substantiate our claim that the suggested optimizations pro-
vided substantial increase in speed, we implemented four versions of the faster
DES algorithm, and four versions of the faster UNIX password algorithm:

¢ one without G and with a 6 bit data path to F,
® one with G and with a 6 bit data path to F»

.12 -

® one without G and with a 12 bit data path to F,
® one with G and with a 12 bit data path to F,

The routines were timed on several different architectures, and the resulis col-
lected below. As a control, the standard UNIX implementation, which stores
one bit per storage unit {(byte) and uses a straightforward translation of the
algorithm into C, was also timed.

Table 1. _The Computers

computer txm(;re;nézga}s (pe;):rir 4 manufacturer
Amdahl 5880 60 32 Amdahl Corp.
Convex 1 (32) 100 32 Convex Computer Corp.
Convex 1 (64) 100 64 Convex Computer Corp.
Cray 2 . 243902439 64 Cray Research Inc.
IBM PC/RT 100 32 IBM Corp.
IRIS 25007 60 32 Silicon Graphics Inc.
Sequent 21000 100 32 Sequent Computer Systems
Sun 3/50 60 32 Sun Microsystems, Inc.
VAX 11/780 100 32 Digital Equipment Corp.
VAX 11/785 100 32 Digital Equipment Corp.

Table I summarizes the machines and their relevant characteristics.
{More detailed information is in appendix IV.) In particular, note the clock
rates; with all except the Cray 2, the routines were expected to execute much
faster than the clock tick. The usual way to make timings is to start the clock,
run the routine, stop the clock, and determine the elapsed time. However,
since this would be on the order of one tick, the results gleaned this way
would be highly suspect. So, what was done instead was to start the clock and
execute a loop for approximately 10 seconds (virtual time.) A counter in this
loop was Incremented every time the routine completed execution. When the
time was up, the next return ended the loop, and the clock was stopped and
the elapsed time computed. Another loop, just like the first but without the
call to the routine, was execuied for the same number of iferations; the time
to complete this loop was then subtracted from the elapsed time. This way,
the total time was subject to an error of at most two clock ticks. This pro-
cedure was repeated ten times, and the times and ratios computed by averag-
ing over the ten results. (The tables in Appendix V give the actual timings.)

We should also note that the timings are not meaningful when comparing
among many machines, because the loads were very different. On the assump-
tion that none of the loads changed dramatically during the testing (an assump-
tion that in fact held), the ratios express the amount of speedup quite accu-
rately; this is why we use them in this section, rather than the times.

-13 -

Table I Ratio of Mean Execution Times: DES Encryption Routines
UNIX Interface

¢ 6 bit path 12 bit path standard

computer without G | with G | without G_| with G | function
Amdahl 5880 7.18 7.19 1.97 8.00 1.00
Convex 1 (32) 4,29 4.26 5.09 5.04 1.00
Convex 1 (64) 4.85 4.84 5.62 5.60 1.00
Cray 2 9.50 9.51 10.28 10.30 1.00
IBM PC/RT 7.88 7.89 8.67 8.74 1.00

IRIS 25007 8.37 8.32 10.98 10.95 1.0
Sequent 21000 8.89 8.67 9.74 9.71 1.00
Sun 3/50 7.33 7.21 9,45 9.29 1.00
VAX 11/780 6.12 5.88 6.15 6.00 1.00
| VAX 11/785 6.78 6.82 7.56 7.77 1.00

Table II gives the ratio of the mean execution time of the DES encryption
routines to the UNIX standard DES encryption routines, The interface is the
same; the standard UNIX routines setkey and encrypt (see crypt(3) in [2] or
crypt (3C) in [1]) can be replaced by these simply by naming a library to the
linking loader. In all cases, there 1s a substantial speedup, from a factor of 4.3
for the Convex running with 32 bits per word and using the 6 bit path version
not using G, to 11.0 on the IRIS 2500T running the 12 bit path version.

Table 111, Ratio of Mean Execution Times: DES Encryption Routines
computer 6 bit path 12 bit path standard
-Omp without G I with (G | without &] with G | function

Amdahl 5880 11.99 12.04 14.46 14.80 1.00
Convex 1 (32) 5.85 5.87 7.52 7.31 1.00
Convex 1 (64) 6.99 7.00 8.64 8.59 1.00
Cray 2 18.51 18.55 21.60 21.66 1.00
IBM PC/RT 13.14 13.24 15.39 15.65 1.00
IRIS 2500T 12.99 12.96 20.69 20.66 1.00
Sequent 21000 17.14 17.22 20.97 21.27 1.00
Sun 3/50 11.29 11.G7 17.36 16.71 1.00
VAX 11/780 12.24 11.44 11.41 11.69 1.00
VAX 11/785 15.66 14.55 17.65 20.07 1.00

Based on these figures, we suspect that a good portion of the time
mvolved is bit packing; the interface packs 64 bits, each initially in its own
byte, into § bytes. So, if we eliminate this packing, we should see the new
routines speed up. In fact this is what happened. As evidence of this claim,
consider table 1II. Except for the last column, all counts are from calling the
routines directly, without the UNIX interface; so, there is no bit packing done.
In all cases, the new routines are substantially faster than the standard UNIX
functions, with the improvement ranging from a factor of 5.9 for the Convex
using 32 bits per word and running the 6 bit path version without G to 21.7 on

-14 -

the Cray 2 running the 12 bit path version without G,

Table IV. Ratio of Mean Esecution Times: Password Encryption Routines |
UNIX Interface
¢ 6 bit path 12 bit path standard
COmMPULEr 1" without G | with G | without G | with G | function
Amdah] 5880 17.25 16.82 16.52 19.50 1.00
Convex 1 (32) 10.56 10.55 16.29 16.11 - 100
Convex 1 (64) 13.15 13.01 19.60 19.67 1.00
Cray 2 42.09 41,99 59.35 59.92 1.00
IBM PC/RT 16.25 18.93 24.12 23.96 1.00
IRIS 25007 16.66 16.87 30.55 31.47 1.00
Sequent 21000 23.62 23.39 29.96 29.41 1.00
Sun 3/50 14.70 14.88 26.00 26.49 1.00
VAX 117780 17.01 15.67 16.57 15.90 1.00
VAX 11/785 19.71 17.89 24.10 22.36 1.00

The increase in speed of the UNIX password encryption routine is far
more dramatic; Table IV documents them. Although the password encryption
algorithm is essentially 25 iferations of the DES encryption routine, all F, and
all but one of the F5 are omitted; hence, we expect the ratios to be more
dramatic than those in Table 1II. Table IV shows our expectations are ful-
filled. The factors of improvement range from a low of 10.6 for the Convex
using 32 bits per word and running the 6 bit path version {with or without G)
to a high of 60.0 for the IRIS 25007 running the 12 bit path version using G.

;F_z;ble V. Ratio of Mean Execution Times: Password Encryption Routines

computer 6 bit path _ 12 bit path standard
P without G | with G | without G | with G | function
Amdahl 5880 18.24 17.89 21.56 21.58 1.00

Convex 1{(32) 11.13 10.99 17.55 17.38 1.00
Convex 1 (64) 14,11 14.03 22.08 21.91 1.00

Cray 2 47.40 47.06 71.55 71.26 1.00
IBM PC/RT 22.77 22.77 28.00 21.66 1.00
IRIS 2500T 17.33 17.58 32.82 33.78 1.00
Sequent 21000 25.04 24.12 32.63 31.97 1.00
SUN 3/50 15.26 15.38 27.11 28.12 1.00
VAX 11/780 16.87 15.41 17.74 17.06 1.00
VAX 11/785 20,42 19.97 27.61 25.11 1.00

Finally consider the speedup mentioned in the previous section, namely
omitting the transformation Fj How much this affects the speed depends
quite a bit on the architecture of the machine; if it can handle bytes well,
there should be little effect, but if it is optimized to work with words the omis-
sion may improve things substantially. Table V bears this out; the incerase for
byte-oriented machines is typically 1 or 2 more iterations than when Fj is

-15 -

included, but for machines such as the Cray 2, the speedup is far more sub-
stantial (on the order of 11 iterations when a 12 bit data path is used).

These timings demonstrate that there is a substantial performance gain by
using the suggested techniques to speed up the DES routines and the UNIX
algorithm. In fact, the speedup is so substantial that trying each word in a dic-
tionary to see if it matches a user’s encrypted password becomes feasible,
(One of the goals of salting was to avoid this attack [10].) Say an on-line dic-
tionary contains 25,000 words. Using the standard password encryption func-
tion on a VAX 11/780, it would take 17,730.5 seconds (about 5 hours) to check
a particular encrypted password; to check a collection of 100 passwords, it
would take 1,773,049.6 seconds (about 20.5 days) if each used a different salt.
But using this method, it would take 1002 seconds (about 17 minutes) to check
a particular encrypted password, and 100,200.0 seconds (about 28 hours) to
check 100 encrypted passwords each with a different salt. This shows the
danger of relying on a routine’s computing something slowly to provide protec-
tion; it also demonstrates the old adage that making a cipher more complex
does not make it more secure.

7. Conclusion

JThe results of the previous section demonstrate that the UNIX password
routines can be made significantly faster. In fact, even if the salt were 24 bits
rather than 12, the algorithm would still be amenable to the same type of
attack. The problem is that the method used to perturb 7z can be imple-
mented as a bit operation rather than forcing it to be a permutation of tables.

There is one area not touched upon in this discussion, and that is the role
of assembly language coding. It has been the author’s experience that coding
in assembly language can cut speed by up to 40%. We did not do this because
there are too many different machine languages and architectures involved.
To implement that part properly would require a special postprocessing pass
different for each computer. That would conflict with the goal of a very port-
able package. (Currently the user must set two compile-time flags properly,
and may set two others that improve performance on some machines should
he or she so desire.)

We intend to use this version to test passwords, and see if the characteris-
tics noted in [10] hold for our site. If so, we will {ry to change user habits.
This version of the encryption routine is a great step forward in realizing our
goal of a system where no passwords can be found by using a dictionary, or a
list of words, to compromise passwords.

Acknowledgements: Thanks to Bob Van Cleef, who first suggested the project
that led to this work, and to David Balenson, who pointed me to many of the
papers that led me to think of this mathematical representation of the DES.
Thanks also to Robert Baldwin, who made the observation (referred to in sec~
tion 4) that the salt could be computed in four instructions per iteration; and |
am grateful for his very clear exposition. Finally, 1 am grateful to Peter Salus
for the valuable comments and suggestions on earlier drafts of this paper; his

- 16 -

comments materially improved its clarity.

References

I

2.

10.

11

-, “UNIX Systemm V — Release 2.0 Programmer Reference Manual”,
AT&T Technologies 307-113, Issue 2, 1984,

-, UNIX Programmer’s Reference Manual, 43 Berkeley Software
Distribution, Virtual VAX-11 Version, Computer Systems Research Group,
Computer Science Division, EECS, University of California, Berkeley,
Berkeley, CA 94720, November 1986, as reprinted by the USENIX

Association,
Baidwin, R., Fast DES and Password Transforms in Software, private
communication, 1987,

Davies, D., “A New Look at the DES Complementation Property and
Weak Keys”, unpublished, (April 1987).

. Davio, M., Desmedt, Y., Fosseprez, M., Govaerts, R., Hulsbosch, J.,

Neutjens, P., Piret, P., Quisquater, J.-J., Vandewalle, I. and Wouters, P,
“Analytical characteristics of the DES”, -in Advances in Cryptology:
Proceedings of Crypto 83, D. Chaum (ed.), Plenum Press, New York, NY,
Avugust 1983, -

Davio, M., Desmedt, Y., Goubert, J., Hoomaert, F. and Quisquater, J.-
J., “Efficient hardware and software implementations for the DES”, in
Advances in Cryptology: Proceedings of Crypto 84, vol. 196, G. Blakley
and D. Chaum (ed.), Springer-Verlag, New York, NY, August 1984

Hoornaert, I'., Goubert, J. and Desmedt, Y., “Efficient hardware
implementation of the DES”, in Advances in Cryptology: Proceedings of
Crypto 84, vol. 196, G. Blakley and D. Chaum (ed.), Springer-Verlag,
New York, NY, August 1984.

. Konheim, A., Cryptography: A Primer, John Wiley & Sons, Inc., New

York, NY, 1981.

Meyer, C. and Matyas, S., Cryptography: A New Dimension in Data
Security, John Wiley & Sons, Inc., New York, NY, 1982.

Morris, R. and Thompson, K., “Password Security: A Case History”,
Communications of the ACM, 22, 11 (November 1979) 594-597.

“Data Encryption Standard”, Federal Information Processing Standards
Publication 46, National Bureau of Standards, January 1977,

Appendix I. The DES Tables

The permutations, expansions, and substitutions are controlled by the

following tables. For permutations and expansions, the number in the ith
position is the number of the input bit to be output at that position; for the
substitution, the first and last bits indicate the row number, the middie four
bits the column number, and the position of the 6 bits within the 48 bit data
the number of the table used. Read left to right, starting at the top row; so
with the table for IP, the first twenty bits of the output will be bits 58, 50, 42,

~-17 «

34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4, 62, 54, 46, and 38. of the input.

The following are the tables used for encrypting and decrypting the
message.

Table for mp

S8 50 423426 18 102 60 52 44362820124
62 54 46 38 30 22 14 6 64 56 48 40 32 24 16 8
574941332517 915951433527 19113
61 53 4537 290 21 13 5 63 5547393123157
Table for
40 8 48 16 56 24 64 32 39 7 47 15 55 23 63 31
38 6 46 14 54 22 62 30 37 5 45 13 53 21 61 29
36 4 44 12 52 20 60 28 35 3 43 11 51 19 59 27
34242 1050 18 58 26 33 1 41 949 17 57 25
Table for nz
3212345 4567289
8 910 1112 13 12 13 14 15 16 17
16 17 18 19 20 21 20 21 22 23 24 25
24 25262728292829303132 1
Table for 7p
1672021 29122817 115232 518 3110
2824

24 14 3227 3 9191330 62211 425

Table for ofP

511 8 310 612 5
213 110 61211 9
6 2111512 ¢ 7 3
9 1 7 511 31410

[—
L I N I -

1 1

2
1 14
1 13

ol B S WL N LY

1
4
8
2

o ot =N RO

4

151

Table for of?

11 3 4 97 21312
2 814120 110 6
413 1 5812 6 9
54 2116 712 0

ja—y

W oW Ln

1

Ll e
O L
p.....t

1

[SN I 'Y

6
5
0
3

e
O3 o

1

Table for of®

155 11312 71
610 2 8 5141
3 11 212
8 41514 31

ko ek
a3 3 O
G I O
OO0 LY Oy
1 B

3
4
15
9

fuo o NN R e’
OO D b

0
01
7

18 -

Table for a{¥

713143 0 6 910 128 51112 415
13 8115 615 0 3 47212 11014 9
10 6 901211 713151314 5 2 8 4
315 0610 113 8 9451112 7 214
Table for o’
212 4 1 71611 6 8 5§ 31513014 9
1411 212 4 713 1 5 01510 39 8 6
4 2 1111013 7 815 912 5 63 014
11 812 7 114 213 615 0 9104 5 3
Table for o{®
12 110159 2 6 8 013 3 414 7 511
1015 4 2712 9 5 6 11314 011 3 8
91415 52 812 3 7 0 410 11311 6
4 3 2126 515101114 1 7 6 O 813
Table for o{”
411 214150 813 3129 7 5106 1
I3 011 7 49 11014 3512 2158 6
1 41113123 71410156 8 0O 59 2
61113 § 1410 7 9 501514 2312
Table for §%
13 2 84 61511 110 9 314 5 012 7
11513810 3 7 412 5 611 014 9 2
711 41 91214 2 0 6101315 3 5 8
2 1147 410 8131512 9 0 3 5 611

The following are the tables for the functions to generate the key
schedule,

Table for Tpe.z

574941332517 9 158 5042 34 26 18
10 2595143352719 11 36052 44 36
63 55 47 393123 15 7 62 54 46 38 30 22
14 661 534537292113 5282012 4

Table for Tpes
14171124 1 5 32815 621 10
231912 42 816 7272013 2
41 52 31 37 47 55 30 40 51 45 33 48
44 49 39 56 34 53 46 42 50 36 29 32

- 19 .

Schedule of left shifts for key schedule computation
11 22222212222221

Appendix II, Precomputation of FI’ Fzm,r, Fs, and &

The following program precomputes Fq, Foyr, and Fy in the arrays
fsubl, fsubZINT , and fsub3, respectively.

var pisubIP: array[1..64] of integer; (* 7;p as an array %)
etasubE: array[1..48] of integer; (* 7y as an array %)
etasubEinv: array[1..32] of integer; (x 55! as an array *)
sigmasubs: array[1..8](1..64] of integer; (x o5 as an array %)
pisubP: array[1..32] of integer; (x mp as an array %)
pisubIPinv: array[1..64] of integer; (* 7mp* as an array)

fsubl: array{1..96] of integer; (x for F, #)

fsub2INT: array[l..32] of integer; (x for Fopyr as an array %)
fsub3: array[1..64] of integer; (x for F; %)

tmp: array[1..64] of integer; (+ used to store 75E #)

(* compute the left half of F; as an array %)
fori:=1to 48 do

fsublfi] = pisubIP{etasubE[i]];
(* compute the right half of F, as an array %)
fori:=49to 96 do

fsub1[i] = pisubIPletasubE[i—47]+32];
(* combine the permutations in Fopr %)
fori:=11to 48 do

fsub2INT(i} = pisubPletasubEfil};
(x compute 7y g} and put it in tmp %)
fori:=1to 32 do

tmpli] = etasubEinv[i] 4+ 48;
fori:=331to0 64 do

tmpli] = etasubEinv[i—32};
(x compute f 5 as an array %)
fori:=1t0 64 do

fsub3li] = tmplpisubIPinvi]};

The following shows how to compute G ; its values are stored in the array g.

var pisubPCl: array{l..56] of integer; (x 7pe.; as an array *)
pisubLSH: array[1..16] of integer; (x 7y ¢y as an array %)
pisubPC2: array{1. 48] of integer; (* 7pc; as an array #)
g: array]1..16][1..48] of integer; (x for G %)
tmp: integer; (xused to exchange elements %)

(* compute g as an array %)

w20 -

fori:=11to 16 do begin
{* compute the elements of Ty gy Tpe.; a5 an array x)
for j := 1 to pisubLSH[i] do begin
tmp = pclfl];
fork :=2t028 do
pelfj~1] = pcifil;
pcl[28] = tmp;
tmp :=pcl29};
for k 1= 30 to 56 do
pedfi—1] = pelfj);
pcl[56] 1= tmp;
end;
(x now apply 7pc.p %)
forj :=1to 48 do
glil[i] = pisubPCl{pisubPC2{j]];
end;

Appendix IIl. The Functions FI, FZIN'I" Fs, and &

The following are tables of bit permutations in the same format as those
tables in appendix 1 Note that these are nor used directly in the fast
implementation, but are used to compute bit vectors which are.

The meaning and nature of each function 1s discusses in sections 2 and 3.

Fy
8 58 50 42 34 26 34 26 18 10 2 60
2 60 52 44 36 28 36 28 20 12 4 62
4 62 544638 3038302214664
6 64 56 48 40 32 40 32 24 16 § 58
75749041 3325332517 9159
159 51 4335 27352719113 61
361 5345372037 20721 13563
563 55 473931 393123 157 57
Fanr

2516 7202129212912 2817 1
17 1152326 526 5183110 2
10 2 8241432143227 3 919
9191330 622 62211 42516

F
11 59 23 71 35 83 47 95
10 58 22 70 34 82 46 94
9 57 21 69 33 81 45 93
8 56 20 68 32 80 44 92
5 53 17 65 20 77 41 89
4 52 16 64 28 76 40 88
3 51 15 63 27715 39 87
2 50 14 62 26 74 38 86
G
1051346049 17 3357 2 91942 33526725
44 58 59 136 27 18 41 22 28 39 54 37 4 47 30
5532372961 21 38 63 15 2045 14 13 62 55 31
Gy
243265241 9254959 111 34 6027 18 17
36 50 51 58 57 19 10 33 14 20 31 46 29 63 39 22
28 45 1521 53 13 3055 7 1237 6 5 54 47 23
G,
5127 1036 2558 933435060 18 44 11 21
49 34 354241 3591761 415301347236
122962 53728 1439546321 53 2038317
Gs
35 11 5949 9 42 58 17 27 34 44 2 57 60 51 30
33181926 255243 1455562142831 753
63 13 46 20 21 12 61 23 3847 537 422 15 54

Gy
19 60 43 33 58 26 42 1 11 18 57 51 41 44 35 34
17 2 310 9 36 27 50 29 39 46 61 12 15 54 37
472830 4 56345 72231202155 66238

G £ '
34427 17 42 10 26 50 60 2 41 35 25 57 19 18
151 52 59 58 49 11 34 13 23 30 45 63 62 38 21
3112 14 55 20 47 29 54 615 4 5 39 53 46 22

Gs
525711 12659 103444512519 941 32
50 353643 42 33 60 18 28 7 14 29 47 46 22 5
1563 61 39 431 13 38 53 62 55 20 23 37 30 6

-

7
5 358255251
133130 620
4 77211453

36 41 60 50 10 43 59
34 19 49 27 26 17 44
62 47 45 23 55 15 28

735 9
12 54 61
37 46 39

927 16050 17 44 43
26 11 41 1918 93659 4 46 53 523 22 61 12
54 3937 1547 72014 29 38 31 63 62 13 6 45
33 11 50
55 30 37
13 22 15

41 17 36 26 51 19 35 S
106025 3 25849 4
38 23 21 62 31 54 4 61

G
18
2
22
Gg
57335242 23551104
G
4
G
9
3

Gio
35 319 43 17 60 34 57 18 50 41 11
5142 332739 14 21 4 54 53 29 47
15 38 55 45 28 6 62 31 30 12 37 13

Gy
327 144 18 41 2 34 25 60
7112361 55538371331
O 29 12 53 46 15 14 63 21 28
Gz

11 50 57
745 2
63 37

58 37
2 62

60
13 6
G

60

44 1

20 63

13
42 18 127 52 49 36 60 34 4
11 25 26 33 3 59 50 44 54
37 22 55 61 30 53 7 28 47

2
14 46 45 3

Gia
26 2 50 11 36 33 49 44 18 253558 19 51 42 41
60 © 10 17 52 43 34 57 38 13 55 7 53 20 63 46
216394514 37 54 12 31 561 30 20 15 4 47

Gis
185942 3572541 36 10 17 27 50 11 43 34 33
52 1 2 944 35264930 5 47 62 45 12 55 38
1361 31 37 672946 423 28 53 22921 7 63 39

-23 .

Appendix IV, Detailed Information about the Computers

Amdahl] 5880
MANUFACTURER: Amdah! Corp.
OPERATING SYSTEM: UTS 580 version 1.1.3
VERSION OF C COMPILER: (Version.c) 1.27.1.1
TIMER ACCURACY (INTERVALS/SECOND): 60
BITS PER WORD: 32

Convex C-1
MANUFACTURER: Convex Computer Corp.
OPERATING SYSTEM: Convex UNIX v6.1.33.22
VERSION OF C COMPILER: v2.0.0.1
TIMER ACCURACY (INTERVALS/SECOND): 100
BITS PER WORD: 32 or 64
The vectorizing abilities of this machine were not used,

Cray 2
MANUFACTURER: Cray Research Inc.
OPERATING SYSTEM: UNICOS 3.0
TIMER ACCURACY (INTERVALS/SECOND): 243902439
BITS PER WORD: 64
The vectorizing abilities of this machine were not used.

IBM PC/RT
MANUFACTURER: IBM Corp.
OPERATING SYSTEM: 4.3 BSD UNIX (NORTHSTAR)
TIMER ACCURACY (INTERVALS/SECONDY: 100
BITS PER WORD: 32

IRIS 25007
MANUFACTURER: Silicon Graphics Inc.
OPERATING SYSTEM: GL2-W3.6
TIMER ACCURACY (INTERVALS/SECOND}: 60
BITS PER WORD: 32

Sequent Balance 21000
MANUFACTURER: Sequent Computer Systems
OPERATING SYSTEM: DYNIX{(TM) v3.0.4 NFS
PROCESSOR: National Semiconductor 32032
TIMER ACCURACY (INTERVALS/SECOND): 100
BITS PER WORD: 32

-4 -

Sun 3
MANUFACTURER: Sun Microsystems, Inc.
OPERATING SYSTEM: Sun UNIX 4.2 Release 3.4
PROCESSOR: Motorola Corporation 68020
TIMER ACCURACY (INTERVALS/SECOND): 60
BITS PER WORD: 32

VAX 11/780
MANUFACTURER: Digital Equipment Corp.
OPERATING SYSTEM: 4.3 BSD UNIX
TIMER ACCURACY (INTERVALS/SECOND): 100
BITS PER WORD: 32

VAX 11/785
MANUFACTURER: Digital Equipment Corp.
OPERATING SYSTEM: 4.3 BSD UNIX
TIMER ACCURACY (INTERVALS/SECOND): 100
BITS PER WORD: 32

Appendix V. Timings for the DES and Password Encryption Routines
The tables below indicate the mean time per call to the routines. These tables

were used to derive the tables in section 6.

Execution Time Per Call {(seconds): DES Encryption Routines
UNIX Interface

combuter 6 bit path 12 bit path standard
P without G | with G without G | with G function
Amdahl 5880 2.820e-04 2.823¢-04 2.547¢04 2.53%-04 2.031e03
Convex 1(32) 1.78%-03 1.800e-03 1.506e-03 1.523¢-03 7.670e-03
Convex 1 (64) 1.572¢-03 1.578e-03 1.358¢03 1.363e-03 = 7.632¢-03
Cray 2 5.398e-04 5.391e-04 498904 4.977e-04 5.126e-03
IBM PC/RT 1.035¢-03 1.034e-03 9.417¢04 9.343¢-04 8.163e-03
IRIS 2500T 2.023e-03 2.035¢03 1.541e-03 1.545¢03 1.692e-02
Sequent 21000 5.687¢-03 5.837¢-03 5.192e¢03 5.179¢-03 5.058e-02
Sun 3/50 1.983e-03 2.017¢-03 1.538¢03 1.565¢-03 1.454e2
VAX 11/780 4.556e03 4.741e-03 4.536e03 4.649¢-03 2.788e(2
LVAX 11/785 3.194e-03 317603 _ 2.867¢03 2.788¢03 2.166e-02

.25 .

Execution Time Per Call (seconds): DES Encryption Routines |
computer 6 bit path 12 bit path
without G i with G without G | with G i’

Amdahl 5880 1.6%4e04 1.688¢-04 1.404e-04 1.373e-04
Convex 1 (32) 1.312¢03 1.308¢03 1.020e-03 1.049¢-03
Convex 1 (64) 1.092¢-03 1.09%e-03 8.829%-04 8.88%-04
Cray 2 276904 2.764e-04 2.373e-04 2.367¢-04
IBM PC/RT 6.214e-04 6.166e-04 5.303e-04 5204e-04
IR1S 2500T 1.303¢-03 1.305¢03 8.180e-04 8.192-04
Sequent 21000 2.951e-03 2.938e-03 2.412e-03 2.378e03
Sun 3/50 1.288¢-03 1.314e03 8.373¢-04 8.701e-(4
VAX 11/780 2.277e03 2.436e03 2.443e03 2.386e-03

ILVYAX 11/785 1.384¢03 1.480e-03 1.227e-03 1.079-03

UNIX Interface

Execution Time Per Call {seconds): Password Encryption Routines

computer 6 bit path 12 bif path standard
without G | with G without G 1 with G function
Amdall 5880 3.055e-03 3.133e03 2.699¢-03 2.701e-03 5.268e-02
Convex 1 (32) 1.854e02 1.856e-02 1.202e-02 1.215e02 1.957e01
Convex 1 (64) 1.488e02 1.504e-02 9.984e(3 9.945e-03 1.957e01
Cray 2 3.151e-03 3.158e03 2.234e-03 2.213e-03 1.326e-01
IBM PC/RT 1.091e2 1.110e02 8.712e-03 8.770e-03 2.101e01
IRIS 2500T 2.616e02 2.584¢-02 1.427¢-02 1.385¢02 4.360e-01
Sequent 21000 5.499e-02 5.553e-02 4.335e-02 4.416e-02 1.299e+(0
Sun 3/50 2.518e02 2.489¢-02 1.424e(2 1.398e¢02 3.702e-01
VAX 11/780 4.181e-02 4.538e-02 4.2G1e-02 4.474e-02 7.111e-01
VAX 11/785 2.815e-02 3.102e07 2.304e02 2.483e-02 5.551e-01 |

Execution Time Per Call {seconds): Password Encryption Routines

computer 6 bit path 12 bit path standard
without G | with G| without G | with G function

Amdahl 5880 2.888e-03 2.945¢-03 2.443e-(03 2.442¢-03 5.268e-02
Convex 1 (32) 1.758e¢-02 1.781e-02 1.115¢02 1.127e-02 1.957¢-01
Convex 1 (64) 1.387¢-02 1.395¢-02 8.860e-03 8.929-03 1.957¢-01
Cray 2 2.798e-03 2.818e-03 1.854e-03 1.861e03 1.326e-01
IBM PC/RT 9.226e-03 9.229e03 7.504e-03 7.596e03 2.101e01
IRIS 2500T 2.516e02 2.481e02 1.328e-02 1.291e-02 4.360e-01
Sequent 21000 5.187e-02 5.385¢-02 3.980e-02 4.062e-02 1.299e+00
Sun 3/50 2.426e-02 2.407¢-02 1.336e-02 1.316e02 3.702¢-1
VAX 11/780 3.768e-02 4.614¢02 4.008¢-02 4.169¢-02 7.111e-01
VAX 11/785 271902 2.780e-02 2.010e-02 2. 211e-02 5.551e01 |

