

© Copyright 2009 Stottler Henke Associates, Inc.

Metaphor Computing

Dan Fu Matt Bishop

Stottler Henke Associates, Inc. University of California, Davis

fu@stottlerhenke.com bishop@cs.ucdavis.edu

Stottler Henke Technical Report TR2009-01

August 10, 2009

Abstract

We define metaphor computing as a way to transform difficult computational problems into easier

human-solvable problems, and transform solutions back into computational solutions. This report

explores initial ideas.

Keywords

metaphor computing, human computation, case-based reasoning, analogy

2

1 Introduction
Training for today’s workforce is a key ingredient for ensuring success for tomorrow’s business. The

development of critical skill sets results in productive personnel able to handle complex problems. As the

complexity of problems we encounter increases in step with industrial growth, there has existed a demand

for an ever more sophisticated workforce. To improve productivity, especially with regard to large

software systems, interface designers are continually challenged to study activity and make the user’s

interaction as simple and efficient as possible. In this report we do not advocate ways to make training

more effective for specialized skill sets. In fact, we advance the opposite: that we should examine what

people are good at, and leverage those skills to solve complex problems. Unfortunately, what most

people are good at has little to do with solving complex problems. However, it may be possible to

transform a complex problem into a set of simpler problems that most people can solve, and then map the

solutions back to a solution for the complex problem.

Consider research work on linguistic metaphor. Metaphors are pervasive [Lakoff & Johnson, 1980].

Whether we talk about panes, windows, screens, or firewalls at the local Home Depot or Apple computer

store, people move fluidly among these multiple metaphors to understand the world and to act effectively.

Rather than relegate metaphor to an ill-fitting paradigm of idiom creation, we advocate metaphor taking

center stage by providing the key insights that enable people to solve hard problems. Indeed, the

fundamental motivation for using a metaphor is to articulate a new concept by using an already familiar

one. So then, we ask, why not use the familiar one in the first place?

The innovation afforded by a computational form of metaphor enables less sophisticated workers, already

trained in a given occupation, to leverage their skills to solve problems in different domains that to them

appear very difficult. As an example, look at the problem of computer network intrusion. Highly trained

personnel and sophisticated software are necessary to protect the network—but what if metaphor software

could transform the network into a virtual environment such as a base with a protective perimeter,

security gate, buildings, rooms, doors, locks, sensitive areas, and so forth? Then the protection of the

network amounts to defending this “virtual fort.” Detecting intrusions into the network amounts to

recognizing suspicious individuals and activities. Subduing the individual might be mapped to

suspending activity for an unverified user or software agent in the network. We suggest this metaphor

because protecting a computer network as if it were a castle has long been used in undergraduate

computer science classes [Frincke & Bishop, 2004]. Thus, most people are familiar with the metaphor

and can leverage this already-understood knowledge. If computational metaphor transformations are

successfully realized, there would be fewer training requirements on personnel. Security guards are a lot

easier to hire and train than white hat hackers. Less time would be expended on training.

Using this technique, a lightly-trained force could be quickly mobilized to defend against cyber attacks.

Consider the attack on Estonia’s network infrastructure on April 26, 2007 [Evron, 2008]. Russian public

forums discussed attacks for days before the Estonian attacks. In fact, instructions on how to attack the

Estonian infrastructure were published in these forums, potentially enabling anyone with an Internet

connection to participate in the attacks. This is in contrast to the average Estonian citizens who might

have had an interest in fending off the attacks. They were powerless; indeed, even though Estonia is one

of the most Internet-integrated countries in the EU, citizens could only rely on their CERT team to protect

them. One might even assume that a portion of their own computers were used against them.

This example describes an equally important property of metaphor. Most people know how to protect

their home: lock doors and windows when you leave, don’t leave a key under the mat by the front door,

etc. If this metaphor can be translated such that protecting a home network or system required the home

user to “lock” a virtual house, then people who have no security training, and, in all probability, would

actively resist such training, can provide their system or network with basic protection. The intuition

involved makes securing the system less difficult, and at the same time more acceptable.

3

2 Problem Transformation
Consider a two player game where each player, in turn, chooses a number from 1 to 9. Numbers cannot

be repeated. The first player to have uttered any 3 numbers that add to 15 wins. This problem is

analogous to identifying a legal row, column or diagonal on a magic square. Do you recognize this

game? It’s tic-tac-toe. The two games are isomorphic: being good at one game translates into being good

at the other. Although a contrived example, it embodies what we’d first like to characterize; namely,

classes of problems that can map to other problems. In the ideal case, we’d discover classes of problems

that are difficult for machines, but easy for humans.

We posit that there exist problems that are hard for machines (machine-hard or M-hard), but easy for

people (people-easy or P-easy). We believe these problems, when represented formally, are amenable to

transformation from M-hard to P-easy, but further, that the P-easy solution can be transformed back into

an M-hard solution. Figure 1 is an informal chart of problems. An initial objective is to scope and

characterize these spaces formally so that we can understand what makes a problem difficult to solve.

Most importantly, we want to mine a space of problems in the lower right hand quadrant that are M-hard

but P-easy. Ideally we would discover classes of real world problems that can be associated with as yet

undefined classes of “metaphorical environments”. This is a catch-all term for where people can perform

P-easy tasks. One can think of the environments as being virtual worlds specifically crafted to help solve

M-hard problems.

Figure 1: Chart of problems to examine.

Lakoff & Johnson [1980] have identified several types of metaphors. For example, one can use a

building; e.g., when talking about a research paper, “I didn’t like the façade, but the foundation was firm,”

or, “They buttressed their argument with solid references.” One could use a transfer metaphor; e.g.,

“They conveyed their concepts well,” or, “The few good ideas were buried in an avalanche of jargon.”

The point being that these metaphors use physical concepts to facilitate understanding. Because these

concepts are rooted in the real world—perhaps the gist of which a five year old could understand—we

believe it’s possible to automatically fabricate virtual worlds in which a layman could work.

Hard

Hard

Easy

Easy

People

Machine

Vision

Natural language processing

Navigation

Tic-tac-toe

NP-hard

Planning & SchedulingLink discovery

Intrusion detection

Chess

Sudoku

Grocery store shopping

Course of action analysis

Driving cross country

Quadrant of Interest

Calculus / Classical physics

CAPTCHA

4

Figure 2 shows an idealized process where we have a formal description of the real world problem which

then gets transformed into a virtual world problem. The transformation results in a problem description

consisting of a virtual environment and set of user goals & tasks. The environment consists of three

elements:

1. Virtual 3-D Terrain: Holds the environmental data in which the user operates. This should

resemble a real environment such as a house;

2. Actions: These dictate the ways in which objects interact in the environment. The user’s ability

to act or manipulate objects is defined here;

3. Perception: A depiction of the environment.

The user’s “goals & tasks” are what will occupy the user during a problem solving session. For instance,

the user may traverse the grounds of a house, searching for anything out of the ordinary. That could be in

an obvious form, such as greeting a visitor knocking on the front door. What the user does next will

affect not only the virtual world, but also the real world. In the case of the Estonian attack, citizens could

at minimum “patrol” their own computers to prevent unauthorized outgoing DoS attacks.

Figure 2: Transforming a real world problem into a virtual problem.

3 Metaphor Implementation
Once a virtual problem description has been defined, we must examine how to make the metaphor

operational. Figure 3 illustrates this process. On the top portion there is the relation between the real

world and the virtual world, linked together via a transformation algorithm. The real world has effectors

and sensors. The effectors cause tangible change in the real world, while the sensors report on real world

state. The transformation algorithm maps sensor information into the virtual world. Actions (events) in

the virtual world drive the effectors in the real world. On the lower right there are the user who performs

tasks and the interface elements. The user acts using the monitor, keyboard, joystick, etc.

Using the security example, an effector action could be to block a port, while a sensor logs an attempted

connection to the port in question. In the virtual world, the event driving the blocked port is likely a

direct action by the user. If a castle, then the action could be to lock a door.

Represent real
problem

Real Problem
Transformation

Algorithm

REAL WORLD
PROBLEM

DESCRIPTION

VIRTUAL PROBLEM DESCRIPTION

Environment

Actions

Goals & tasks

Perception

Virtual 3-D
Terrain

Knowledge engineer

Transform the problem

5

Figure 3: Mapping virtual world problem to real world problem.

4 Conclusion
This report lays out some basic ideas for metaphor computing. As we’ve argued, the chief benefit is that

relatively unskilled personnel, such as a high school age videogame players, could be used to perform

complex, skilled tasks at the level of a network administrator or information assurance red team. Rather

than present neat solutions, this report raises several questions of whether metaphor computing is really

possible. We view these questions as basic precursors to finding an answer:

1. Can real world problems be represented to permit automated 1-to-1 transformation?

2. Which metaphors will work best for a given person or problem? Though it might seem intuitive,

when was the last time you protected a castle?

3. Current real worlds aren’t mature. Events in the real world require sensor output to map into the

virtual world, and conversely, actions in the virtual world require effectors in the real world. It’s

likely that for now the real world must be a software-driven world.

4. The security purpose could mean lives are at stake. Witness the unwillingness to adopt telepresence

for gunnery—an instance where the person actually knows what they’re doing.

5. A metaphor will prove brittle if and when it breaks. Graceful degradation of performance may not be

possible. Orchestration and transition between multiple metaphors is likely.

6. Users will not know exactly what they’re doing. Two things to infer are that (1) pulling a user further

away from the raw, complex problem may preclude insight and innovation; and (2) there are ethical

considerations.

Several bodies of research inform this work. Few security researchers have explored 3-D technologies for

visualization of network activity (e.g., [Fisk, 2003]). Other than that, there are numerous loosely related

efforts such as human computation (CAPTCHA, Amazon’s mechanical Turk), relating one problem to

another (case-based reasoning, analogy, theory of NP-completeness), telepresence and robotics,

entertainment (demoscene, MMO games, serious games), science fiction literature (Ender’s Game, Signal

to Noise, Neuromancer), behaviorist psychology (Skinner’s pigeon-guided torpedoes, Adams’ bat

bombs), developmental psychology (Gibson and Walk’s visual cliff), and human vision (preattentive

processing).

VIRTUAL WORLD

Perform tasks

REAL WORLD

INTERFACE ELEMENTS

“Layman”

State
information

Real Time
Transformation

Algorithm

Entities

Terrain

State
information

Entities

Terrain

Solve the problem

State, perception, & events

Events

DepictionActions

S
e

n
so

rs
E

ff
e

ct
o

rs

6

5 References
Evron, G. (2008). Battling Botnets and Online Mobs: Estonia’s Defense Efforts during the Internet War.

Georgetown Journal of International Affairs. Winter/Spring 2008.

Fisk, M., Smith, S.A., Weber, P.M., Kothapally, S., & Caudell, T.P. (2003). “Immersive network

monitoring,” in Proceedings of the 2003 Passive and Active Measurement Workshop.

Frincke, D.A., & Bishop, M. (2004). Guarding the Castle Keep: Teaching with the Fortress Metaphor.

IEEE Security & Privacy 2(3): 69-72.

Lakoff, G. & Johnson, M. (1980). Metaphors We Live By. Chicago: University of Chicago Press.

	Introduction
	Problem Transformation
	Metaphor Implementation
	Conclusion
	References

