
Secure Programming:�
A Way of Life (or Death)

Matt Bishop
Computer Security Laboratory

Dept. of Computer Science
University of California at Davis



Computer Security Laboratory
Dept. of Computer Science
University of California at Davis

Disclaimer

➤ Any and all opinions expressed here are not 
necessarily those of the:
➤ Computer Security Laboratory
➤ Department of Computer Science
➤ University of California
➤ U.S. government and any of its agencies
➤ Anyone else you can think of, including my 

pets

Slide #2



Computer Security Laboratory
Dept. of Computer Science
University of California at Davis

Theme: Does It Matter?

➤ How important is secure coding?
➤ If it is so important, why aren’t we “priming 

the pump” seriously?

Slide #3



Computer Security Laboratory
Dept. of Computer Science
University of California at Davis

Weinberg’s Second Law

Slide #4

If builders built buildings the way programmers
wrote programs . . .

then the first woodpecker to come along
would destroy civilization

The Psychology of Computer Programming (1971)



Computer Security Laboratory
Dept. of Computer Science
University of California at Davis

What Exactly Are We Talking 
About?

➤ Robust programming—prevents abnormal 
termination, unexpected actions

➤ Secure programming—satisfies (stated or 
implicit) security properties

➤ Example: buffer overflows
➤ Always non-robust programming
➤ May or may not be non-secure programming

Slide #5



Computer Security Laboratory
Dept. of Computer Science
University of California at Davis

Robust vs. Secure Programming

Slide #6

Secure programming requires robust programming

You can’t have realistic security without robustness



Computer Security Laboratory
Dept. of Computer Science
University of California at Davis

Problem

➤ We don’t build systems that meet security 
requirements

➤ We don’t write software that is robust
➤ Some exceptions in special cases

➤ Many different models for developing 
software
➤ Agile, waterfall, rapid prototyping, . . .

Slide #7



Computer Security Laboratory
Dept. of Computer Science
University of California at Davis

Quality of Code

➤ Underlying all this is programming
➤ When coding, you make assumptions about 

services, systems, input, output
➤ Other components you rely on have bugs or 

may act unexpectedly
➤ Hard to have robust, secure software when 

the infrastructure isn’t

Slide #8



Computer Security Laboratory
Dept. of Computer Science
University of California at Davis

Security is Cumulative

➤ Composing non-secure modules produces 
non-secure software

➤ Can ameliorate this with shims to handle 
non-secure results
➤ Shims provide the security
➤ What if they themselves are written, installed, 

etc. non-securely?
➤ What if they can be bypassed?

Slide #9



Computer Security Laboratory
Dept. of Computer Science
University of California at Davis

More Problems

➤ Refactor code, use external libraries, 
modules, services
➤ You inherit their bugs and assumptions!

➤ Example: RSAREF2 library buffer overflow 
(1999)
➤ Affected ssh, anything using that library

➤ Move code into different environment, 
assumptions may not hold

Slide #10



Computer Security Laboratory
Dept. of Computer Science
University of California at Davis

Basic Principles of Robustness

➤ Paranoia
➤ Assume maximum stupidity
➤ Don’t hand out dangerous implements
➤ “Can’t happen” means it can

Slide #11



Computer Security Laboratory
Dept. of Computer Science
University of California at Davis

Helping Solve the Technical 
Problem

➤  Isolate assumptions, make them explicit
➤ Not just your code, but also about what your code 

calls
➤ Allows you to build (informal) preconditions, 

postconditions for others to use
➤ Make them part of the documentation (or 

comments)
➤  Identify those relating to security explicitly

➤ Good judgment needed here

Slide #12



Computer Security Laboratory
Dept. of Computer Science
University of California at Davis

Test to These!

➤ Make sure your assumptions hold in the 
environment(s) you intend the software to 
be used
➤ If you state them explicitly, users can check 

them
➤ Think autoconf to check these on installation
➤ Warn if not met!

Slide #13



Computer Security Laboratory
Dept. of Computer Science
University of California at Davis

What Will Drive Improvement?

➤ Commercial incentives
➤ Financial savings from not cleaning up so many 

messes
➤ Maintenance simpler
➤ Better reputation (of products, company)
➤ Easier to bring new programmers, software 

engineers up to speed on products
➤ Issues of software liability

Slide #14



Computer Security Laboratory
Dept. of Computer Science
University of California at Davis

What Will Drive Improvement?

➤ Government incentives
➤ Financial savings from not cleaning up so many 

messes
➤ Maintenance simple
➤ Better defenses for national security

Slide #15



Computer Security Laboratory
Dept. of Computer Science
University of California at Davis

Software Liability

➤  You can’t say “I’m not responsible for anything”
➤ Chain of distribution (ie, supply chain) liability exists 

now
➤  You can limit liability somewhat by defining use, 

environment
➤ Then you’re liable in that context but (probably) not in 

others
➤  It is coming . . .

➤ EULAs may not be enforceable (“contracts of 
adhesion”)

Slide #16



Computer Security Laboratory
Dept. of Computer Science
University of California at Davis

Software Liability

➤ Don’t dump it on the programmers!!!!
➤ Non-programming considerations impact 

quality of programs
➤ More about this in a bit ...

Slide #17



Computer Security Laboratory
Dept. of Computer Science
University of California at Davis

So What’s Holding Us Back?

➤ Commercial
➤ No legal liability for bad software
➤ More expensive to make; longer time to market
➤ Lack of people who write robust code

➤ Government
➤ Need to spend more money to get it
➤ Need to pay more attention to installation, 

maintenance, use
➤ Need to recruit people who can use it well

Slide #18



Computer Security Laboratory
Dept. of Computer Science
University of California at Davis

So What’s Holding Us Back?

➤ Academic
➤ Robust coding not seen as integral to programming

➤ Textbooks loaded with examples of non-robust 
programming

➤ Lack of support for enforcing and grading for it in 
non-introductory classes
➤ Ties into lack of graders who really know about this

➤ Lack of faculty who understand robust 
programming
➤ And intimidation factor for those who know they don’t 

understand it

Slide #19



Computer Security Laboratory
Dept. of Computer Science
University of California at Davis

Lack of Resources

➤ Assurance costs!
➤ Industry expected to deliver secure, robust 

products without offset for the extra effort in 
delivering them

➤ Academia expected to teach and reinforce 
robust programming without offset for the extra 
effort in supporting this 

Slide #20



Computer Security Laboratory
Dept. of Computer Science
University of California at Davis

Lack of People

➤ Need to teach people how to write robust 
programming
➤ Need to emphasize this in the practice, 

supporting it both in education and industry
➤ Continuous practice is central to 

reinforcing, maintaining, extending skills

Slide #21



Computer Security Laboratory
Dept. of Computer Science
University of California at Davis

Focus for Rest of Talk

➤ How can industry and government work 
with academic institutions to do this?
➤ Carrots, not sticks
➤ Security tuned to environment, use
➤ What is “secure” varies among companies and 

government organizations
➤ Everyone lacks resources!!!

Slide #22



Computer Security Laboratory
Dept. of Computer Science
University of California at Davis

How Do We Teach Secure 
Programming?

➤ SESS report has suggestions
➤ http://nob.cs.ucdavis.edu/~bishop/notes/2011-

sess/2011-sess.pdf
➤ Key conclusion: no one sector can improve 

the state of the practice on its own
➤ “We must all hang together, or we shall all 

hang separately” (B. Franklin)

Slide #23



Computer Security Laboratory
Dept. of Computer Science
University of California at Davis

Questionable Idea #1: Testing�
Students’ Knowledge

➤ Who creates the tests?
➤ Who is being tested?
➤ How do you know that you are testing what 

is important (that is, the “right thing”)?
➤ Who determines what is an acceptable 

result?
➤ Teaching for the test, not the material

Slide #24



Computer Security Laboratory
Dept. of Computer Science
University of California at Davis

Questionable Idea #2:�
Unsupported Mandates

➤ The support has to come from somewhere
➤ It’s like a zero-sum game

➤ What do you want to weaken?
➤ If you only have so many resources, something 

will have to give
➤ You don’t want to weaken the core foundation 

of understanding why certain programming 
paradigms are critical

Slide #25



Computer Security Laboratory
Dept. of Computer Science
University of California at Davis

What Can Academia Do?

➤  Include robustness in evaluation of programs, 
programming projects

➤ Create a “secure programming clinic”
➤ Like an English clinic, or a writing clinic for law 

schools
➤ Evaluation project being funded by NSF

➤ Provide supplementary material for textbooks, 
classes
➤ These should emphasize robust programming

Slide #26



Computer Security Laboratory
Dept. of Computer Science
University of California at Davis

What Can Industry Do?

➤ Key is to do more than say it is important
➤ Make clear that the skills are important for 

hiring
➤ Mention their need in job openings
➤ Preference to those with skill in this also helps

Slide #27



Computer Security Laboratory
Dept. of Computer Science
University of California at Davis

Work With Students and Faculty

➤ Internships
➤ Students love these; good recruiting tool
➤ Tasks requiring robust programming emphasize 

its importance to students
➤ Help teach students

➤ Review students’ code
➤ Team with colleges in senior/capstone projects 

Slide #28



Computer Security Laboratory
Dept. of Computer Science
University of California at Davis

What Will This Do?

➤ Increase student demand
➤ If students see it as important, they will ask 

about it in class, evaluate programs, faculty in 
part on it

➤ Increase your visibility
➤ Good recruiting tools
➤ A corporate “good citizen”

Slide #29



Computer Security Laboratory
Dept. of Computer Science
University of California at Davis

Government Support

➤ Act like an industry (see above)
➤ Government can also fund programs
➤ Imperative: target funding towards this 

specific purpose
➤ That will require funding to be used for 

supporting robust programming
➤ If done as adjunct, it is likely to disappear in the 

main purpose of the funding
Slide #30



Computer Security Laboratory
Dept. of Computer Science
University of California at Davis

NSA (NSA/DHS) CAE Program

➤ Begun in 1997 with 7 universities
➤ Office of the Assistant Secretary of Defense 

for Networks and Information Integration 
does oversight

➤ Academia funded via IASP (scholarships) 
and Capacity Building grants

➤ Program has very limited funding

Slide #31



Computer Security Laboratory
Dept. of Computer Science
University of California at Davis

NSF Education and Human 
Resources

➤ Scholarships for Service supports graduate 
students 

➤ Capacity building funds to improve state of 
education in computer security
➤ Secure programming projects funded here are 

prototypes
➤ Focus on tool development, building awareness
➤ Funding not large

Slide #32



Computer Security Laboratory
Dept. of Computer Science
University of California at Davis

NSF Funding Sources

➤ Program funded in the Commerce/Justice/ 
Science appropriations bill

➤ Could add extra funding targeted to secure 
programming projects specifically

➤ Focus for NSF alone should be on 
experimental projects to learn what works, 
what doesn’t, and under what conditions

Slide #33



Computer Security Laboratory
Dept. of Computer Science
University of California at Davis

Critical Warning About NSF

Slide #34

Otherwise, the state of computer security (and
other research) will degrade, impairing our
nation’s strengths in science and technology
as well as other areas

Augment NSF’s budget to cover this



Computer Security Laboratory
Dept. of Computer Science
University of California at Davis

National Initiative for 
Cybersecurity Education

➤ Originally run by Dept. of Education and 
NSF

➤ Now run by NIST
➤ Mission: to bolster formal cybersecurity 

education programs encompassing 
kindergarten through 12th grade, higher 
education, and vocational programs

Slide #35



Computer Security Laboratory
Dept. of Computer Science
University of California at Davis

More About NICE

➤ Goal 3 includes developing a cybersecurity 
capable workforce
➤ Analogy between teaching cybersecurity and 

subjects like reading, writing, science, 
mathematics

➤ Analogy with writing good English seems 
appropriate

➤ Seems to be a natural program to drive this
Slide #36



Computer Security Laboratory
Dept. of Computer Science
University of California at Davis

Key Points

➤ Build on existing programs
➤ Understand that academia is a different 

environment—completely
➤ Business models don’t work well because the 

“end product” is intangible and very long-term

Slide #37



Computer Security Laboratory
Dept. of Computer Science
University of California at Davis

A Really, Really Important Point!

➤ Academic institutions are rarely governed 
hierarchically
➤ Example: UC has an administration and an 

Academic Senate
➤ The Senate, not the administration, has 

responsibility for the curriculum

Slide #38

Effect: no-one can order faculty to teach
something in a particular way



Computer Security Laboratory
Dept. of Computer Science
University of California at Davis

Conclusion

➤ The state of practice can, and must, change
➤ Teaching robust programming, and nothing 

more, will not help
➤ The marketplace must also change, as must 

current practice
➤ The public will be the main driver

➤ Unfortunately, probably through lawsuits . . .

Slide #39


