
Lecture for January 11, 2016

ECS 235A
UC Davis

January 11, 2016 ECS 235A Slide #1

Overview

•  Protection state of system
– Describes current settings, values of system

relevant to protection
•  Access control matrix

– Describes protection state precisely
– Matrix describing rights of subjects
– State transitions change elements of matrix

January 11, 2016 ECS 235A Slide #2

Description

objects (entities)

su
bj

ec
ts

s1
s2

…

sn

o1 … om s1 … sn •  Subjects S = { s1,…, sn }
•  Objects O = { o1,…, om }
•  Rights R = { r1,…, rk }
•  Entries A[si, oj] ⊆ R
•  A[si, oj] = { rx, …, ry }

means subject si has rights
rx, …, ry over object oj

January 11, 2016 ECS 235A Slide #3

Example 1

•  Processes p, q
•  Files f, g
•  Rights r, w, x, a, o

f g p q
p rwo r rwxo w
q a ro r rwxo

January 11, 2016 ECS 235A Slide #4

Example 2

•  Host names telegraph, nob, toadflax
•  Rights own, ftp, nfs, mail

 telegraph nob toadflax
telegraph own ftp ftp
nob ftp, mail, nfs, own ftp, nfs, mail
toadflax ftp, mail ftp, mail, nfs, own

January 11, 2016 ECS 235A Slide #5

State Transitions

•  Change the protection state of system
•  |– represents transition

– Xi |–τ Xi+1: command τ moves system from state
Xi to Xi+1

– Xi |–* Y: a sequence of commands moves
system from state Xi to Y

•  Commands often called transformation
procedures

January 11, 2016 ECS 235A Slide #6

Primitive Operations
•  create subject s; create object o

–  Creates new row, column in ACM; creates new column
in ACM

•  destroy subject s; destroy object o
–  Deletes row, column from ACM; deletes column from

ACM
•  enter r into A[s, o]

–  Adds r rights for subject s over object o
•  delete r from A[s, o]

–  Removes r rights from subject s over object o
January 11, 2016 ECS 235A Slide #7

Create Subject

•  Precondition: s ∉ S
•  Primitive command: create subject s
•  Postconditions:

–  Sʹ = S ∪{ s }, Oʹ = O ∪ { s }
–  (∀y ∈ Oʹ) [aʹ[s, y] = ∅], (∀x ∈ Sʹ) [aʹ[x, s] = ∅]
–  (∀x ∈ S)(∀y ∈ O) [aʹ[x, y] = a[x, y]]

January 11, 2016 ECS 235A Slide #8

Create Object

•  Precondition: o ∉ O
•  Primitive command: create object o
•  Postconditions:

–  Sʹ = S, Oʹ = O ∪ { o }
–  (∀x ∈ Sʹ) [aʹ[x, o] = ∅]
–  (∀x ∈ S)(∀y ∈ O) [aʹ[x, y] = a[x, y]]

January 11, 2016 ECS 235A Slide #9

Add Right

•  Precondition: s ∈ S, o ∈ O
•  Primitive command: enter r into a[s, o]
•  Postconditions:

–  Sʹ = S, Oʹ = O
–  aʹ[s, o] = a[s, o] ∪ { r }
–  (∀x ∈ Sʹ)(∀y ∈ Oʹ – { o }) [aʹ[x, y] = a[x, y]]
–  (∀x ∈ Sʹ – { s })(∀y ∈ Oʹ) [aʹ[x, y] = a[x, y]]

January 11, 2016 ECS 235A Slide #10

Delete Right

•  Precondition: s ∈ S, o ∈ O
•  Primitive command: delete r from a[s, o]
•  Postconditions:

–  Sʹ = S, Oʹ = O
–  aʹ[s, o] = a[s, o] – { r }
–  (∀x ∈ Sʹ)(∀y ∈ Oʹ – { o }) [aʹ[x, y] = a[x, y]]
–  (∀x ∈ Sʹ – { s })(∀y ∈ Oʹ) [aʹ[x, y] = a[x, y]]

January 11, 2016 ECS 235A Slide #11

Destroy Subject

•  Precondition: s ∈ S
•  Primitive command: destroy subject s
•  Postconditions:

–  Sʹ = S – { s }, Oʹ = O – { s }
–  (∀y ∈ Oʹ) [aʹ[s, y] = ∅], (∀x ∈ Sʹ) [aʹ[x, s] = ∅]
–  (∀x ∈ Sʹ)(∀y ∈ Oʹ) [aʹ[x, y] = a[x, y]]

January 11, 2016 ECS 235A Slide #12

Destroy Object

•  Precondition: o ∈ O
•  Primitive command: destroy object o
•  Postconditions:

–  Sʹ = S, Oʹ = O – { o }
–  (∀x ∈ Sʹ) [aʹ[x, o] = ∅]
–  (∀x ∈ Sʹ)(∀y ∈ Oʹ) [aʹ[x, y] = a[x, y]]

January 11, 2016 ECS 235A Slide #13

Creating File

•  Process p creates file f with r and w
permission
command create•file(p, f)

create object f;
enter own into A[p, f];
enter r into A[p, f];
enter w into A[p, f];

end

January 11, 2016 ECS 235A Slide #14

Mono-Operational Commands

•  Make process p the owner of file g
command make•owner(p, g)

enter own into A[p, g];
end

•  Mono-operational command
– Single primitive operation in this command

January 11, 2016 ECS 235A Slide #15

Conditional Commands

•  Let p give q r rights over f, if p owns f
command grant•read•file•1(p, f, q)

if own in A[p, f]
then

enter r into A[q, f];
end

•  Mono-conditional command
– Single condition in this command

January 11, 2016 ECS 235A Slide #16

Multiple Conditions

•  Let p give q r and w rights over f, if p owns
f and p has c rights over q
command grant•read•file•2(p, f, q)

if own in A[p, f] and c in A[p, q]
then

enter r into A[q, f];
enter w into A[q, f];

end

January 11, 2016 ECS 235A Slide #17

Copy Right

•  Allows possessor to give rights to another
•  Often attached to a right, so only applies to

that right
–  r is read right that cannot be copied
–  rc is read right that can be copied

•  Is copy flag copied when giving r rights?
– Depends on model, instantiation of model

January 11, 2016 ECS 235A Slide #18

Own Right

•  Usually allows possessor to change entries
in ACM column
– So owner of object can add, delete rights for

others
– May depend on what system allows

•  Can’t give rights to specific (set of) users
•  Can’t pass copy flag to specific (set of) users

January 11, 2016 ECS 235A Slide #19

Attenuation of Privilege

•  Principle says you can’t give rights you do
not possess
– Restricts addition of rights within a system
– Usually ignored for owner

•  Why? Owner gives herself rights, gives them to
others, deletes her rights.

January 11, 2016 ECS 235A Slide #20

What Is “Secure”?

•  Adding a generic right r where there was
not one is “leaking”
–  In what follows, a right leaks if it was not

present initially
– Alternately: not present in the previous state

•  If a system S, beginning in initial state s0,
cannot leak right r, it is safe with respect to
the right r.

January 11, 2016 ECS 235A Slide #21

Safety Question

•  Is there an algorithm for determining
whether a protection system S with initial
state s0 is safe with respect to a generic right
r?
– Here, “safe” = “secure” for an abstract model

January 11, 2016 ECS 235A Slide #22

Mono-Operational Commands

•  Answer: yes
•  Sketch of proof:

Consider minimal sequence of commands c1, …,
ck to leak the right.
–  Can omit delete, destroy
–  Can merge all creates into one
Worst case: insert every right into every entry;
with s subjects and o objects initially, and n
rights, upper bound is k ≤ n(s+1)(o+1)

January 11, 2016 ECS 235A Slide #23

General Case
•  Answer: no
•  Sketch of proof:

Reduce halting problem to safety problem
Turing Machine review:
–  Infinite tape in one direction
–  States K, symbols M; distinguished blank b
–  Transition function δ(k, m) = (kʹ, mʹ, L) means in state

k, symbol m on tape location replaced by symbol mʹ,
head moves to left one square, and enters state kʹ

–  Halting state is qf; TM halts when it enters this state

January 11, 2016 ECS 235A Slide #24

Mapping

A B C D …

1 2 3 4

head

s1 s2 s3 s4

s4

s3

s2

s1 A

B

C k

D end

own

own

ownCurrent state is k

January 11, 2016 ECS 235A Slide #25

Mapping

A B X D …

1 2 3 4

head

s1 s2 s3 s4

s4

s3

s2

s1 A

B

X

D k1 end

own

own

own
After δ(k, C) = (k1, X, R)
where k is the current
state and k1 the next state

January 11, 2016 ECS 235A Slide #26

Command Mapping
δ(k, C) = (k1, X, R) at intermediate becomes
command ck,C(s3,s4)
if own in A[s3,s4] and k in A[s3,s3]

and C in A[s3,s3]
then
delete k from A[s3,s3];
delete C from A[s3,s3];
enter X into A[s3,s3];
enter k1 into A[s4,s4];

end

January 11, 2016 ECS 235A Slide #27

Mapping

A B X Y

1 2 3 4

head

s1 s2 s3 s4

s4

s3

s2

s1 A

B

X

Y

own

own

own
After δ(k1, D) = (k2, Y, R)
where k1 is the current
state and k2 the next state

s5

s5

own

b k2 end

5

b

January 11, 2016 ECS 235A Slide #28

Command Mapping
δ(k1, D) = (k2, Y, R) at end becomes
command crightmostk,C(s4,s5)
if end in A[s4,s4] and k1 in A[s4,s4]

and D in A[s4,s4]
then

delete end from A[s4,s4];
delete k1 from A[s4,s4];
delete D from A[s4,s4];
enter Y into A[s4,s4];
create subject s5;
enter own into A[s4,s5];
enter end into A[s5,s5];
enter k2 into A[s5,s5];

end

January 11, 2016 ECS 235A Slide #29

Rest of Proof
•  Protection system exactly simulates a TM

–  Exactly 1 end right in ACM
–  1 right in entries corresponds to state
–  Thus, at most 1 applicable command

•  If TM enters state qf, then right has leaked
•  If safety question decidable, then represent TM as

above and determine if qf leaks
–  Implies halting problem decidable

•  Conclusion: safety question undecidable

January 11, 2016 ECS 235A Slide #30

Other Results
•  Set of unsafe systems is recursively enumerable
•  Delete create primitive; then safety question is complete in P-

SPACE
•  Delete destroy, delete primitives; then safety question is

undecidable
–  Systems are monotonic

•  Safety question for biconditional protection systems is decidable
•  Safety question for monoconditional, monotonic protection

systems is decidable
•  Safety question for monoconditional protection systems with

create, enter, delete (and no destroy) is decidable.

January 11, 2016 ECS 235A Slide #31

Typed Access Matrix Model

•  Like ACM, but with set of types T
– All subjects, objects have types
– Set of types for subjects TS

•  Protection state is (S, O, τ, A)
–  τ:O→T specifies type of each object
–  If X subject, τ(X) in TS
–  If X object, τ(X) in T – TS

January 11, 2016 ECS 235A Slide #32

Create Rules
•  Subject creation

–  create subject s of type ts
–  s must not exist as subject or object when operation

executed
–  ts ∈ TS

•  Object creation
–  create object o of type to
–  o must not exist as subject or object when operation

executed
–  to ∈ T – TS

January 11, 2016 ECS 235A Slide #33

Create Subject

•  Precondition: s ∉ S
•  Primitive command: create subject s of

type t
•  Postconditions:

–  S´ = S ∪{ s }, O´ = O ∪{ s }
–  (∀y ∈ O)[τ´(y) = τ (y)], τ´(s) = t
–  (∀y ∈ O´)[a´[s, y] = ∅], (∀x ∈ S´)[a´[x, s] = ∅]
–  (∀x ∈ S)(∀y ∈ O)[a´[x, y] = a[x, y]]

January 11, 2016 ECS 235A Slide #34

Create Object

•  Precondition: o ∉ O
•  Primitive command: create object o of type

t
•  Postconditions:

–  S´ = S, O´ = O ∪ { o }
–  (∀y ∈ O)[τ´(y) = τ (y)], τ´(o) = t
–  (∀x ∈ S´)[a´[x, o] = ∅]
–  (∀x ∈ S)(∀y ∈ O)[a´[x, y] = a[x, y]]

January 11, 2016 ECS 235A Slide #35

Definitions

•  MTAM Model: TAM model without delete,
destroy
– MTAM is Monotonic TAM

•  α(x1:t1, ..., xn:tn) create command
–  ti child type in α if any of create subject xi of

type ti or create object xi of type ti occur in α
–  ti parent type otherwise

January 11, 2016 ECS 235A Slide #36

Cyclic Creates

command cry•havoc(s1 : u, s2 : u, o1 : v, o2 : v, o3 : w, o4 : w)
create subject s1 of type u;
create object o1 of type v;
create object o3 of type w;
enter r into a[s2, s1];
enter r into a[s2, o2];
enter r into a[s2, o4]

end

January 11, 2016 ECS 235A Slide #37

Creation Graph

•  u, v, w child types
•  u, v, w also parent

types
•  Graph: lines from

parent types to child
types

•  This one has cycles

u

v w

January 11, 2016 ECS 235A Slide #38

Acyclic Creates
command cry•havoc(s1 : u, s2 : u, o1 : v, o3 : w)

create object o1 of type v;
create object o3 of type w;
enter r into a[s2, s1];
enter r into a[s2, o1];
enter r into a[s2, o3]

end

January 11, 2016 ECS 235A Slide #39

Creation Graph

•  v, w child types
•  u parent type
•  Graph: lines from

parent types to child
types

•  This one has no cycles

u

v w

January 11, 2016 ECS 235A Slide #40

Theorems

•  Safety decidable for systems with acyclic MTAM
schemes
–  In fact, it’s NP-hard

•  Safety for acyclic ternary MATM decidable in
time polynomial in the size of initial ACM
–  “Ternary” means commands have no more than 3

parameters
–  Equivalent in expressive power to MTAM

January 11, 2016 ECS 235A Slide #41

