# Lecture for January 11, 2016

ECS 235A UC Davis

#### Overview

- Protection state of system
  - Describes current settings, values of system relevant to protection
- Access control matrix
  - Describes protection state precisely
  - Matrix describing rights of subjects
  - State transitions change elements of matrix

### Description

#### objects (entities)



- Subjects  $S = \{ s_1, \dots, s_n \}$
- Objects  $O = \{ o_1, ..., o_m \}$
- Rights  $R = \{ r_1, ..., r_k \}$
- Entries  $A[s_i, o_j] \subseteq R$
- $A[s_i, o_j] = \{ r_x, ..., r_y \}$ means subject  $s_i$  has rights  $r_x, ..., r_y$  over object  $o_j$

### Example 1

- Processes p, q
- Files *f*, *g*
- Rights r, w, x, a, o

|   | f   | g  | p    | q             |
|---|-----|----|------|---------------|
| p | rwo | r  | rwxo | $\mathcal{W}$ |
| q | а   | ro | r    | rwxo          |

### Example 2

- Host names telegraph, nob, toadflax
- Rights own, ftp, nfs, mail

tolograph

telegraph nob toadflax

| ieiegraph | noo                 | ισααμαχ             |
|-----------|---------------------|---------------------|
| own       | ftp                 | ftp                 |
|           | ftp, mail, nfs, own | ftp, nfs, mail      |
|           | ftp, mail           | ftp, mail, nfs, own |

noh

toadflar

#### State Transitions

- Change the protection state of system
- I– represents transition
  - $-X_i \vdash_{\tau} X_{i+1}$ : command  $\tau$  moves system from state  $X_i$  to  $X_{i+1}$
  - $-X_i \vdash^* Y$ : a sequence of commands moves system from state  $X_i$  to Y
- Commands often called *transformation* procedures

## Primitive Operations

- create subject s; create object o
  - Creates new row, column in ACM; creates new column in ACM
- destroy subject s; destroy object o
  - Deletes row, column from ACM; deletes column from ACM
- enter r into A[s, o]
  - Adds r rights for subject s over object o
- delete r from A[s, o]
  - Removes r rights from subject s over object o

# Create Subject

- Precondition:  $s \notin S$
- Primitive command: **create subject** s
- Postconditions:
  - $-S' = S \cup \{ s \}, O' = O \cup \{ s \}$
  - $-(\forall y \in O') [a'[s, y] = \varnothing], (\forall x \in S') [a'[x, s] = \varnothing]$
  - $-(\forall x \in S)(\forall y \in O) [a'[x, y] = a[x, y]]$

# Create Object

- Precondition:  $o \notin O$
- Primitive command: **create object** o
- Postconditions:
  - $-S' = S, O' = O \cup \{o\}$
  - $-(\forall x \in S') [a'[x, o] = \emptyset]$
  - $-(\forall x \in S)(\forall y \in O) [a'[x, y] = a[x, y]]$

### Add Right

- Precondition:  $s \in S$ ,  $o \in O$
- Primitive command: enter r into a[s, o]
- Postconditions:
  - -S' = S, O' = O
  - $-a'[s,o] = a[s,o] \cup \{r\}$
  - $-(\forall x \in S')(\forall y \in O' \{o\})[a'[x, y] = a[x, y]]$
  - $-(\forall x \in S' \{s\})(\forall y \in O') [a'[x, y] = a[x, y]]$

### Delete Right

- Precondition:  $s \in S$ ,  $o \in O$
- Primitive command: **delete** r **from** a[s, o]
- Postconditions:

$$-S' = S, O' = O$$

$$-a'[s,o] = a[s,o] - \{r\}$$

$$-(\forall x \in S')(\forall y \in O' - \{o\})[a'[x, y] = a[x, y]]$$

$$-(\forall x \in S' - \{s\})(\forall y \in O') [a'[x, y] = a[x, y]]$$

# Destroy Subject

- Precondition:  $s \in S$
- Primitive command: destroy subject s
- Postconditions:
  - $-S' = S \{ s \}, O' = O \{ s \}$
  - $-(\forall y \in O') [a'[s, y] = \varnothing], (\forall x \in S') [a'[x, s] = \varnothing]$
  - $-(\forall x \in S')(\forall y \in O') [a'[x, y] = a[x, y]]$

# Destroy Object

- Precondition:  $o \in O$
- Primitive command: destroy object o
- Postconditions:
  - $-S' = S, O' = O \{ o \}$
  - $-(\forall x \in S') [a'[x, o] = \varnothing]$
  - $-(\forall x \in S')(\forall y \in O') [a'[x, y] = a[x, y]]$

#### Creating File

• Process *p* creates file *f* with *r* and *w* permission

```
command create file(p, f)
    create object f;
    enter own into A[p, f];
    enter r into A[p, f];
    enter w into A[p, f];
end
```

#### Mono-Operational Commands

Make process p the owner of file g
 command make • owner(p, g)
 enter own into A[p, g];
 end

- Mono-operational command
  - Single primitive operation in this command

#### **Conditional Commands**

- Let p give q r rights over f, if p owns f command grant read file 1(p, f, q) if own in A[p, f] then enter r into A[q, f]; end
- Mono-conditional command
  - Single condition in this command

#### Multiple Conditions

 Let p give q r and w rights over f, if p owns f and p has c rights over q

```
command grant • read • file • 2(p, f, q)
    if own in A[p, f] and c in A[p, q]
    then
    enter r into A[q, f];
    enter w into A[q, f];
end
```

# Copy Right

- Allows possessor to give rights to another
- Often attached to a right, so only applies to that right
  - -r is read right that cannot be copied
  - -rc is read right that can be copied
- Is copy flag copied when giving r rights?
  - Depends on model, instantiation of model

### Own Right

- Usually allows possessor to change entries in ACM column
  - So owner of object can add, delete rights for others
  - May depend on what system allows
    - Can't give rights to specific (set of) users
    - Can't pass copy flag to specific (set of) users

### Attenuation of Privilege

- Principle says you can't give rights you do not possess
  - Restricts addition of rights within a system
  - Usually *ignored* for owner
    - Why? Owner gives herself rights, gives them to others, deletes her rights.

#### What Is "Secure"?

- Adding a generic right r where there was not one is "leaking"
  - In what follows, a right leaks if it was not present *initially*
  - Alternately: not present in the previous state
- If a system S, beginning in initial state  $s_0$ , cannot leak right r, it is safe with respect to the right r.

### Safety Question

- Is there an algorithm for determining whether a protection system S with initial state  $s_0$  is safe with respect to a generic right r?
  - Here, "safe" = "secure" for an abstract model

### Mono-Operational Commands

- Answer: yes
- Sketch of proof:

Consider minimal sequence of commands  $c_1, \ldots, c_k$  to leak the right.

- Can omit delete, destroy
- Can merge all creates into one

Worst case: insert every right into every entry; with *s* subjects and *o* objects initially, and *n* rights, upper bound is  $k \le n(s+1)(o+1)$ 

#### General Case

- Answer: no
- Sketch of proof:

Reduce halting problem to safety problem

Turing Machine review:

- Infinite tape in one direction
- States K, symbols M; distinguished blank b
- Transition function  $\delta(k, m) = (k', m', L)$  means in state k, symbol m on tape location replaced by symbol m', head moves to left one square, and enters state k'
- Halting state is  $q_f$ ; TM halts when it enters this state

# Mapping



Current state is *k* 

|       | $s_1$ | $s_2$ | $s_3$ | $s_4$ |  |
|-------|-------|-------|-------|-------|--|
| $s_1$ | A     | own   |       |       |  |
| $s_2$ |       | В     | own   |       |  |
| $s_3$ |       |       | C k   | own   |  |
| $s_4$ |       |       |       | D end |  |
|       |       |       |       |       |  |

# Mapping



After  $\delta(k, C) = (k_1, X, R)$ where k is the current state and  $k_1$  the next state

|       | $s_1$ | $s_2$ | $s_3$ | $s_4$       |  |
|-------|-------|-------|-------|-------------|--|
| $s_1$ | A     | own   |       |             |  |
| $s_2$ |       | В     | own   |             |  |
| $s_3$ |       |       | X     | own         |  |
| $S_4$ |       |       |       | $D k_1$ end |  |
|       |       |       |       |             |  |

### Command Mapping

```
\delta(k, C) = (k_1, X, R) at intermediate becomes
command C_{k,C}(s_3,s_4)
if own in A[s_3, s_4] and k in A[s_3, s_3]
      and C in A[s_3, s_3]
then
  delete k from A[s_3, s_3];
  delete C from A[s_3, s_3];
  enter X into A[s_3, s_3];
  enter k_1 into A[s_4, s_4];
end
```

# Mapping



After  $\delta(k_1, D) = (k_2, Y, R)$ where  $k_1$  is the current state and  $k_2$  the next state

|                       | $s_1$ | $s_2$ | $s_3$ | $s_4$ | <i>S</i> <sub>5</sub> |
|-----------------------|-------|-------|-------|-------|-----------------------|
| $s_1$                 | A     | own   |       |       |                       |
| $s_2$                 |       | В     | own   |       |                       |
| $s_3$                 |       |       | X     | own   |                       |
| $s_4$                 |       |       |       | Y     | own                   |
| <b>s</b> <sub>5</sub> |       |       |       |       | $b k_2$ end           |

## Command Mapping

```
\delta(k_1, D) = (k_2, Y, R) at end becomes
command crightmost<sub>k,C</sub>(s_4, s_5)
if end in A[s_4,s_4] and k_1 in A[s_4,s_4]
       and D in A[S_A, S_A]
then
  delete end from A[s_4, s_4];
   delete k_1 from A[S_4, S_4];
   delete D from A[S_A, S_A];
  enter Y into A[S_4, S_4];
   create subject s_5;
  enter own into A[s_4, s_5];
   enter end into A[s_5, s_5];
   enter k_2 into A[s_5, s_5];
end
```

#### Rest of Proof

- Protection system exactly simulates a TM
  - Exactly 1 end right in ACM
  - 1 right in entries corresponds to state
  - Thus, at most 1 applicable command
- If TM enters state  $q_f$ , then right has leaked
- If safety question decidable, then represent TM as above and determine if  $q_f$  leaks
  - Implies halting problem decidable
- Conclusion: safety question undecidable

#### Other Results

- Set of unsafe systems is recursively enumerable
- Delete **create** primitive; then safety question is complete in **P-SPACE**
- Delete **destroy**, **delete** primitives; then safety question is undecidable
  - Systems are monotonic
- Safety question for biconditional protection systems is decidable
- Safety question for monoconditional, monotonic protection systems is decidable
- Safety question for monoconditional protection systems with create, enter, delete (and no destroy) is decidable.

### Typed Access Matrix Model

- Like ACM, but with set of types T
  - All subjects, objects have types
  - Set of types for subjects TS
- Protection state is  $(S, O, \tau, A)$ 
  - $-\tau: O \rightarrow T$  specifies type of each object
  - If **X** subject,  $\tau(\mathbf{X})$  in TS
  - If **X** object,  $\tau(\mathbf{X})$  in T TS

#### Create Rules

- Subject creation
  - create subject s of type ts
  - s must not exist as subject or object when operation executed
  - $ts \in TS$
- Object creation
  - create object o of type to
  - o must not exist as subject or object when operation executed
  - $to \in T TS$

# Create Subject

- Precondition:  $s \notin S$
- Primitive command: create subject s of type t
- Postconditions:
  - $-S' = S \cup \{ s \}, O' = O \cup \{ s \}$
  - $-(\forall y \in O)[\tau'(y) = \tau(y)], \tau'(s) = t$
  - $-(\forall y \in O')[a'[s,y] = \varnothing], (\forall x \in S')[a'[x,s] = \varnothing]$
  - $-(\forall x \in S)(\forall y \in O)[a'[x, y] = a[x, y]]$

# Create Object

- Precondition:  $o \notin O$
- Primitive command: create object o of type
- Postconditions:
  - $-S' = S, O' = O \cup \{ o \}$
  - $-(\forall y \in O)[\tau'(y) = \tau(y)], \tau'(o) = t$
  - $-(\forall x \in S')[a'[x, o] = \varnothing]$
  - $-(\forall x \in S)(\forall y \in O)[a'[x, y] = a[x, y]]$

#### **Definitions**

- MTAM Model: TAM model without delete, destroy
  - MTAM is Monotonic TAM
- $\alpha(x_1:t_1,...,x_n:t_n)$  create command
  - $t_i$  child type in  $\alpha$  if any of create subject  $x_i$  of type  $t_i$  or create object  $x_i$  of type  $t_i$  occur in  $\alpha$
  - $-t_i$  parent type otherwise

### Cyclic Creates

```
command cry•havoc(s_1:u,s_2:u,o_1:v,o_2:v,o_3:w,o_4:w)

create subject s_1 of type u;

create object o_1 of type v;

create object o_3 of type w;

enter r into a[s_2,s_1];

enter r into a[s_2,o_2];

enter r into a[s_2,o_4]
```

### Creation Graph



- *u*, *v*, *w* child types
- u, v, w also parent types
- Graph: lines from parent types to child types
- This one has cycles

### Acyclic Creates

```
command cry \cdot havoc(s_1 : u, s_2 : u, o_1 : v, o_3 : w)

create object o_1 of type v;

create object o_3 of type w;

enter r into a[s_2, s_1];

enter r into a[s_2, o_1];

enter r into a[s_2, o_3]
```

#### Creation Graph



- v, w child types
- *u* parent type
- Graph: lines from parent types to child types
- This one has no cycles

#### **Theorems**

- Safety decidable for systems with acyclic MTAM schemes
  - In fact, it's NP-hard
- Safety for acyclic ternary MATM decidable in time polynomial in the size of initial ACM
  - "Ternary" means commands have no more than 3 parameters
  - Equivalent in expressive power to MTAM