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Overview

•  Protection state of system
– Describes current settings, values of system 

relevant to protection
•  Access control matrix

– Describes protection state precisely
– Matrix describing rights of subjects
– State transitions change elements of matrix
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Description

objects (entities)

su
bj

ec
ts

s1
s2

…

sn

o1    …   om   s1   …  sn •  Subjects S = { s1,…, sn }
•  Objects O = { o1,…, om }
•  Rights R = { r1,…, rk }
•  Entries A[si, oj] ⊆ R
•  A[si, oj] = { rx, …, ry } 

means subject si has rights 
rx, …, ry over object oj
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Example 1

•  Processes p, q
•  Files f, g
•  Rights r, w, x, a, o

f g p q
p rwo r rwxo w
q a ro r rwxo
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Example 2

•  Host names telegraph, nob, toadflax
•  Rights own, ftp, nfs, mail

               telegraph            nob            toadflax
telegraph     own                    ftp                      ftp
nob                  ftp, mail, nfs, own     ftp, nfs, mail
toadflax          ftp, mail        ftp, mail, nfs, own
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State Transitions

•  Change the protection state of system
•  |– represents transition

– Xi |–τ Xi+1: command τ moves system from state 
Xi to Xi+1

– Xi |–* Y: a sequence of commands moves 
system from state Xi to Y

•  Commands often called transformation 
procedures
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Primitive Operations
•  create subject s; create object o

–  Creates new row, column in ACM; creates new column 
in ACM

•  destroy subject s; destroy object o
–  Deletes row, column from ACM; deletes column from 

ACM
•  enter r into A[s, o]

–  Adds r rights for subject s over object  o
•  delete r from A[s, o]

–  Removes r rights from subject s over object  o
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Create Subject

•  Precondition: s ∉ S
•  Primitive command: create subject s
•  Postconditions:

–  Sʹ = S ∪{ s }, Oʹ = O ∪ { s }
–  (∀y ∈ Oʹ) [aʹ[s, y] = ∅], (∀x ∈ Sʹ) [aʹ[x, s] = ∅]
–  (∀x ∈ S)(∀y ∈ O) [aʹ[x, y] = a[x, y]]
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Create Object

•  Precondition: o ∉ O
•  Primitive command: create object o
•  Postconditions:

–  Sʹ = S, Oʹ = O ∪ { o }
–  (∀x ∈ Sʹ) [aʹ[x, o] = ∅]
–  (∀x ∈ S)(∀y ∈ O) [aʹ[x, y] = a[x, y]]
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Add Right

•  Precondition: s ∈ S, o ∈ O
•  Primitive command: enter r into a[s, o]
•  Postconditions:

–  Sʹ = S, Oʹ = O
–  aʹ[s, o] = a[s, o] ∪ { r }
–  (∀x ∈ Sʹ)(∀y ∈ Oʹ – { o }) [aʹ[x, y] = a[x, y]]
–  (∀x ∈ Sʹ – { s })(∀y ∈ Oʹ) [aʹ[x, y] = a[x, y]]
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Delete Right

•  Precondition: s ∈ S, o ∈ O
•  Primitive command: delete r from a[s, o]
•  Postconditions:

–  Sʹ = S, Oʹ = O
–  aʹ[s, o] = a[s, o] – { r }
–  (∀x ∈ Sʹ)(∀y ∈ Oʹ – { o }) [aʹ[x, y] = a[x, y]]
–  (∀x ∈ Sʹ – { s })(∀y ∈ Oʹ) [aʹ[x, y] = a[x, y]]
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Destroy Subject

•  Precondition: s ∈ S
•  Primitive command: destroy subject s
•  Postconditions:

–  Sʹ = S – { s }, Oʹ = O – { s }
–  (∀y ∈ Oʹ) [aʹ[s, y] = ∅], (∀x ∈ Sʹ) [aʹ[x, s] = ∅]
–  (∀x ∈ Sʹ)(∀y ∈ Oʹ) [aʹ[x, y] = a[x, y]]
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Destroy Object

•  Precondition: o ∈ O
•  Primitive command: destroy object o
•  Postconditions:

–  Sʹ = S, Oʹ = O – { o }
–  (∀x ∈ Sʹ) [aʹ[x, o] = ∅]
–  (∀x ∈ Sʹ)(∀y ∈ Oʹ) [aʹ[x, y] = a[x, y]]
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Creating File

•  Process p creates file f with r and w 
permission
command create•file(p, f)

create object f;
enter own into A[p, f];
enter r into A[p, f];
enter w into A[p, f];

end

January 11, 2016 ECS 235A Slide #14



Mono-Operational Commands

•  Make process p the owner of file g
command make•owner(p, g)

enter own into A[p, g];
end

•  Mono-operational command
– Single primitive operation in this command
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Conditional Commands

•  Let p give q r rights over f, if p owns f
command grant•read•file•1(p, f, q)

if own in A[p, f]
then

enter r into A[q, f];
end

•  Mono-conditional command
– Single condition in this command
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Multiple Conditions

•  Let p give q r and w rights over f, if p owns 
f and p has c rights over q
command grant•read•file•2(p, f, q)

if own in A[p, f] and c in A[p, q]
then

enter r into A[q, f];
enter w into A[q, f];

end
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Copy Right

•  Allows possessor to give rights to another
•  Often attached to a right, so only applies to 

that right
–  r is read right that cannot be copied
–  rc is read right that can be copied

•  Is copy flag copied when giving r rights?
– Depends on model, instantiation of model
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Own Right

•  Usually allows possessor to change entries 
in ACM column
– So owner of object can add, delete rights for 

others
– May depend on what system allows

•  Can’t give rights to specific (set of) users
•  Can’t pass copy flag to specific (set of) users
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Attenuation of Privilege

•  Principle says you can’t give rights you do 
not possess
– Restricts addition of rights within a system
– Usually ignored for owner

•  Why? Owner gives herself rights, gives them to 
others, deletes her rights.
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What Is “Secure”?

•  Adding a generic right r where there was 
not one is “leaking” 
–  In what follows, a right leaks if it was not 

present initially
– Alternately: not present in the previous state

•  If a system S, beginning in initial state s0, 
cannot leak right r, it is safe with respect to 
the right r.
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Safety Question

•  Is there an algorithm for determining 
whether a protection system S with initial 
state s0 is safe with respect to a generic right 
r?
– Here, “safe” = “secure” for an abstract model
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Mono-Operational Commands

•  Answer: yes
•  Sketch of proof:

Consider minimal sequence of commands c1, …, 
ck to leak the right.
–  Can omit delete, destroy
–  Can merge all creates into one
Worst case: insert every right into every entry; 
with s subjects and o objects initially, and n 
rights, upper bound is k ≤ n(s+1)(o+1)
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General Case
•  Answer: no
•  Sketch of proof:

Reduce halting problem to safety problem
Turing Machine review:
–  Infinite tape in one direction
–  States K, symbols M; distinguished blank b
–  Transition function δ(k, m) = (kʹ, mʹ, L) means in state 

k, symbol m on tape location replaced by symbol mʹ, 
head moves to left one square, and enters state kʹ

–  Halting state is qf; TM halts when it enters this state
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Mapping

A B C D …

1 2 3 4

head

s1 s2 s3 s4

s4

s3

s2

s1 A

B

C k

D end

own

own

ownCurrent state is k
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Mapping

A B X D …

1 2 3 4

head

s1 s2 s3 s4

s4

s3

s2

s1 A

B

X

D k1 end

own

own

own
After δ(k, C) = (k1, X, R)
where k is the current
state and k1 the next state
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Command Mapping
δ(k, C) = (k1, X, R) at intermediate becomes
command ck,C(s3,s4)
if own in A[s3,s4] and k in A[s3,s3]

and C in A[s3,s3]
then
delete k from A[s3,s3];
delete C from A[s3,s3];
enter X into A[s3,s3];
enter k1 into A[s4,s4];

end
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Mapping

A B X Y

1 2 3 4

head

s1 s2 s3 s4

s4

s3

s2

s1 A

B

X

Y

own

own

own
After δ(k1, D) = (k2, Y, R)
where k1 is the current
state and k2 the next state

s5

s5

own

b k2 end

5

b
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Command Mapping
δ(k1, D) = (k2, Y, R) at end becomes
command crightmostk,C(s4,s5)
if end in A[s4,s4] and k1 in A[s4,s4]

and D in A[s4,s4]
then

delete end from A[s4,s4];
delete k1 from A[s4,s4];
delete D from A[s4,s4];
enter Y into A[s4,s4];
create subject s5;
enter own into A[s4,s5];
enter end into A[s5,s5];
enter k2 into A[s5,s5];

end
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Rest of Proof
•  Protection system exactly simulates a TM

–  Exactly 1 end right in ACM
–  1 right in entries corresponds to state
–  Thus, at most 1 applicable command

•  If TM enters state qf, then right has leaked
•  If safety question decidable, then represent TM as 

above and determine if qf leaks
–  Implies halting problem decidable

•  Conclusion: safety question undecidable
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Other Results
•  Set of unsafe systems is recursively enumerable
•  Delete create primitive; then safety question is complete in P-

SPACE
•  Delete destroy, delete primitives; then safety question is 

undecidable
–  Systems are monotonic

•  Safety question for biconditional protection systems is decidable
•  Safety question for monoconditional, monotonic protection 

systems is decidable
•  Safety question for monoconditional protection systems with 

create, enter, delete (and no destroy) is decidable.

January 11, 2016 ECS 235A Slide #31



Typed Access Matrix Model

•  Like ACM, but with set of types T
– All subjects, objects have types
– Set of types for subjects TS

•  Protection state is (S, O, τ, A)
–  τ:O→T specifies type of each object
–  If X subject, τ(X) in TS
–  If X object, τ(X) in T – TS
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Create Rules
•  Subject creation

–  create subject s of type ts
–  s must not exist as subject or object when operation 

executed
–  ts ∈ TS

•  Object creation
–  create object o of type to
–  o must not exist as subject or object when operation 

executed
–  to ∈ T – TS
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Create Subject

•  Precondition: s ∉ S
•  Primitive command: create subject s of 

type t
•  Postconditions:

–  S´ = S ∪{ s }, O´ = O ∪{ s }
–  (∀y ∈ O)[τ´(y) = τ (y)], τ´(s) = t
–  (∀y ∈ O´)[a´[s, y] = ∅], (∀x ∈ S´)[a´[x, s] = ∅]
–  (∀x ∈ S)(∀y ∈ O)[a´[x, y] = a[x, y]]
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Create Object

•  Precondition: o ∉ O
•  Primitive command: create object o of type 

t
•  Postconditions:

–  S´ = S, O´ = O ∪ { o }
–  (∀y ∈ O)[τ´(y) = τ (y)], τ´(o) = t
–  (∀x ∈ S´)[a´[x, o] = ∅]
–  (∀x ∈ S)(∀y ∈ O)[a´[x, y] = a[x, y]]
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Definitions

•  MTAM Model: TAM model without delete, 
destroy
– MTAM is Monotonic TAM

•  α(x1:t1, ..., xn:tn) create command
–  ti child type in α if any of create subject xi of 

type ti or create object xi of type ti occur in α
–  ti parent type otherwise
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Cyclic Creates

command cry•havoc(s1 : u, s2 : u, o1 : v, o2 : v, o3 : w, o4 : w)
create subject s1 of type u;
create object o1 of type v;
create object o3 of type w;
enter r into a[s2, s1];
enter r into a[s2, o2];
enter r into a[s2, o4]

end
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Creation Graph

•  u, v, w child types
•  u, v, w also parent 

types
•  Graph: lines from 

parent types to child 
types

•  This one has cycles

u

v w
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Acyclic Creates
command cry•havoc(s1 : u, s2 : u, o1 : v, o3 : w)

create object o1 of type v;
create object o3 of type w;
enter r into a[s2, s1];
enter r into a[s2, o1];
enter r into a[s2, o3]

end
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Creation Graph

•  v, w child types
•  u parent type
•  Graph: lines from 

parent types to child 
types

•  This one has no cycles

u

v w
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Theorems

•  Safety decidable for systems with acyclic MTAM 
schemes
–  In fact, it’s NP-hard

•  Safety for acyclic ternary MATM decidable in 
time polynomial in the size of initial ACM
–  “Ternary” means commands have no more than 3 

parameters
–  Equivalent in expressive power to MTAM
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