Chapter 8: Noninterference and
Policy Composition

e Overview

 Problem

e Deterministic Noninterference
* Nondeducibility

e Generalized Noninterference

e Restrictiveness
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Overview

* Problem
— Policy composition
* Noninterference
— HIGH inputs affect LOW outputs
e Nondeducibility
— HIGH inputs can be determined from LOW outputs

e Restrictiveness

— When can policies be composed successfully
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Composition of Policies

* Two organizations have two security
policies
 They merge
— How do they combine security policies to
create one security policy?

— Can they create a coherent, consistent security
policy?
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The Problem

e Single system with 2 users
— Each has own virtual machine

— Holly at system high, Lara at system low so
they cannot communicate directly

e CPU shared between VMs based on load

— Forms a covert channel through which Holly,
Lara can communicate
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Example Protocol

* Holly, Lara agree:
— Begin at noon
— Lara will sample CPU utilization every minute

— To send 1 bit, Holly runs program
e Raises CPU utilization to over 60%

— To send O bit, Holly does not run program
e CPU utilization will be under 40%

e Not “writing” in traditional sense

— But information flows from Holly to Lara
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Policy vs. Mechanism

* (Can be hard to separate these

e In the abstract: CPU forms channel along which
information can be transmitted
— Violates *-property
— Not “writing” in traditional sense

e Conclusions:

— Model does not give sufficient conditions to prevent
communication, or

— System 1s improperly abstracted; need a better
definition of “writing”
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Composition of Bell-LaPadula

e Why?
— Some standards require secure components to be connected to
form secure (distributed, networked) system

e (Question

— Under what conditions is this secure?

e Assumptions

— Implementation of systems precise with respect to each system’s
security policy
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Issues

e Compose the lattices

 What 1s relationship among labels?

— If the same, trivial

— If different, new lattice must reflect the
relationships among the levels
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Example

(HIGH, {EAST, WEST})

/

\

(HIGH, {EAST})

(HIGH, {WEST?})

LOW
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‘(TS, {EAST}) ‘(T S, {SOUTH})

(S, {EAST, SOUTH})

/

(S, {EAST}) (S, {SOUTH})
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Analysis

e Assume S < HIGH < TS
e Assume SOUTH, EAST, WEST different

e Resulting lattice has:
— 4 clearances (LOW < S < HIGH < TS)
— 3 categories (SOUTH, EAST, WEST)
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Same Policies

e If we can change policies that components
must meet, composition is trivial (as above)

e If we cannot, we must show composition
meets the same policy as that of
components; this can be very hard
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Different Policies

* What does “secure” now mean?
 Which policy (components) dominates?
e Possible principles:

— Any access allowed by policy of a component
must be allowed by composition of components
(autonomy)

— Any access forbidden by policy of a component
must be forbidden by composition of
components (security)
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Implications

e Composite system satisfies security policy
of components as components’ policies take
precedence

* If something neither allowed nor forbidden
by principles, then:
— Allow it (Gong & Qian)
— Disallow 1t (Fail-Safe Defaults)
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Example

e System X: Bob can’t access Alice’s files

e System Y: Eve, Lilith can access each
other’s files

e Composition policy:
— Bob can access Eve’s files

— Lilith can access Alice’s files

e Question: can Bob access Lilith’s files?
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Solution (Gong & Qian)

e Notation:
— (a, b): a canread b’s files
— AS(x): access set of system x
e Set-up:
- AS(X) =0
— AS(Y) = { (Eve, Lilith), (Lilith, Eve) }
— AS(XUY) = { (Bob, Eve), (Lilith, Alice),
(Eve, Lilith), (Lilith, Eve) }

June 1, 2004 Computer Security: Art and Science Slide #8-15
©2002-2004 Matt Bishop



Solution (Gong & Qian)

e Compute transitive closure of AS(XUY):
— AS(XUY)* = {
(Bob, Eve), (Bob, Lilith), (Bob, Alice),
(Eve, Lilith), (Eve, Alice),
(Lilith, Eve), (Lilith, Alice) }
* Delete accesses conflicting with policies of
components:
— Delete (Bob, Alice)

e (Bob, Lilith) in set, so Bob can access Lilith’s files

June 1, 2004 Computer Security: Art and Science Slide #8-16
©2002-2004 Matt Bishop



Idea

* Composition of policies allows accesses not mentioned by
original policies
e Generate all possible allowed accesses
— Computation of transitive closure
e Eliminate forbidden accesses
— Removal of accesses disallowed by individual access policies

* Everything else 1s allowed

* Note; determining if access allowed 1s of polynomial
complexity
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Interference

e Think of it as something used in
communication

— Holly/Lara example: Holly interferes with the
CPU utilization, and Lara detects
1t—communication

e Plays role of writing (interfering) and
reading (detecting the interference)
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Model

e System as state machine
— Subjects S={s; }
— States~={0; }
— Outputs O ={ o, }
— Commands Z={z, }
— State transition commands C =S5 X Z

e Note: no inputs

— Encode either as selection of commands or in state transition
commands
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Functions

e State transition function 7. CxX2—X

— Describes effect of executing command ¢ in
state O

e QOutput function P: CXx—0

— Output of machine when executng command ¢
In state s

e Initial state is G,
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Example

e Users Heidi (high), Lucy (low)

e 2 bits of state, H (high) and L (Iow)
— System state 1s (H, L) where H, L are O, 1

e ) commands: xor0, xorl do xor with O, 1

— Operations affect both state bits regardless of
whether Heidi or Lucy 1ssues it
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Example: 2-bit Machine

e §={ Heidi, Lucy }

* 2=1{(0,0), (0,1), (1,0), (1,1) }
e C={xor0,xorl }

Input States (H, L)
(0,0) (0,1) (1,0) (1,1)

xor0 00) | ©,1) | 1,00 | (1,1)
xorl (L,1y | (L,o) | O,1) | (0,0)
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Outputs and States

e T'1s inductive 1n first argument, as
1(cy, 69) = Oy; 1(ciyy> Oipy) = 1(cyyy,1(c,6;)
e Let C* be set of possible sequences of
commands in C

o T*:. C*x2X—X and
c,=¢Cy...c, = T%(c,,0;) =1(c,,...,1(cy,0;)...)
e P similar; define P* similarly
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Projection

¢ T%(c,,0;) sequence of state transitions

* P*(c,,0,) corresponding outputs

* proj(s, c,, 0;) set of outputs in P*(c,,0,) that
subject s authorized to see
— In same order as they occur in P*(c,,0))
— Projection of outputs for s

e Intuition: list of outputs after removing
outputs that s cannot see
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Purge

e G C S, Gagroup of subjects
e AcCZ, A asetof commands

* T.(c,) subsequence of c, with all elements
(5,2), s € G deleted

e 1,(c,) subsequence of ¢, with all elements
(5,2), z € A deleted

* T 4(c,) subsequence of ¢, with all elements
(s,2), s € G and z € A deleted

June 1, 2004 Computer Security: Art and Science Slide #8-25
©2002-2004 Matt Bishop



Example: 2-bit Machine

e Leto,=(0,1)
e 3 commands applied:
— Heidi applies xor0

— Lucy applies xorl
— Heidi applies xorl

e ¢, = ((Heidixor0),(Lucy,xorl),(Heidi,xor0))

 QOutputis 011001
— Shorthand for sequence (0,1)(1,0)(0,1)
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Example

e proj(Heidi, ¢, 0,) =011001
* proj(Lucy, c,, 6,) = 101
* T ., (Cy) = (Heidi,xor0), (Heidi,xor )

® T ueyrori(€5) = (Heidi,xor0), (Heidi,xor 1)

K

* Ty (C,) = (Lucy,xorl)
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Example

TcLucy,xorO(Cs) =
(Heidi,xor0),(Lucy xorl),(Heidi,xor1)

° TcHeidi,xorO(Cs) = TcxorO(Cs) =
(Lucy,xorl),(Heid1, xorl)

* Theidinor(C,) = (Heidi, xor0), (Lucy, xorl)
e ., (c,)=(Heidi, xor0)
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Noninterference

e Intuition: Set of outputs Lucy can see corresponds
to set of inputs she can see, there 1s no interference
e Formally: G,G'cS,G# G';Ac Z; Usersin G
executing commands in A are noninterfering with
users in G” iff for all ¢, € C*, and for all s € G,
proj(s, c,, 0;) = proj(s, TCG’A(CS), ;)
— Written A,G :| G’
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Example

e Let ¢, = ((Heid1i,xor0),(Lucy,xorl),(Heidi,xor1))
and o, = (0, 1)

e Take G={Heidi },G'={Lucy }, A=

* Tyqi(c,) = (Lucy,xorl)
— So proj(Lucy, Ty..4(c,), 09) =0

e proj(Lucy, c,, 0,) = 101

e So{ Heid1 } :| { Lucy } 1s false

— Makes sense; commands 1ssued to change H bit also
affect L bit
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Example

e Same as before, but Heidi’s commands affect H
bit only, Lucy’s the L bit only

* Outputis 00,1,
* TheiaiCy) = (Lucy,xorl)
— So proj(Lucy, Ty..4(c,), Gy) =0
e proj(Lucy, c,, 0,) =0
e So { Heid1 } :I { Lucy } 1s true

— Makes sense; commands 1ssued to change H bit now do
not affect L bit
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Security Policy

e Partitions systems into authorized,
unauthorized states

e Authorized states have no forbidden
interferences

 Hence a security policy 1s a set of
noninterference assertions

— See previous definition
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Alternative Development

 System X 1s a set of protection domains D =
{d,....d, }

e When command c executed, it 1s executed
in protection domain dom(c)

e (Give alternate versions of definitions shown
previously
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Output-Consistency

e ce C,dom(c)e D
o ~dom(c) equivalence relation on states of system X
o ~dom©) output-consistent if
G, ~%m) 5, = P(c,0,) = P(c, G,)
e Intuition: states are output-consistent if for subjects in

dom(c), projections of outputs for both states after ¢ are the
same
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Security Policy

e D={d,,...,d, },d aprotection domain
e r: DXD areflexive relation
* Then r defines a security policy

e Intuition: defines how information can flow
around a system

— d;rd; means info can flow from d; to d,

— d.rd; as info can flow within a domain
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Projection Function

e 7’ analogue of T, earlier

 Commands, subjects absorbed 1nto protection
domains

e de D,ce C,c,e C*

e W V)=V

o U (c,c) =" [c,)c if dom(c)rd

e U (c,c)="/[c,) otherwise

e Intuition: if executing ¢ interferes with d, then c 1s
visible; otherwise, as if ¢ never executed
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Noninterference-Secure

e System has set of protection domains D

e System is noninterference-secure with respect to policy r if
P*(c, T*(c,, 0,)) = P*(c, T*(T [(c,), Gy))

* Intuition: if executing c, causes the same transitions for

subjects in domain d as does its projection with respect to
domain d, then no information flows in violation of the

policy
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Lemma

e Let T*(c,, 06, ~* T*(®W (c,), ) forc € C

o If ~4 output-consistent, then system is
noninterference-secure with respect to
policy r
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Proof

e d=dom(c)force C
* By definition of output-consistent,
T*(c,, 6,) ~* T*(1' (c,), Op)
implies
P*(c,T*(c,, 0y)) = P*(c,T*(1 (c,), Gy))

e This 1s definition of noninterference-secure
with respect to policy r
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Unwinding Theorem

e Links security of sequences of state
transition commands to security of
individual state transition commands

* Allows you to show a system design 1s ML
secure by showing it matches specs from
which certain lemmata derived

— Says nothing about security of system, because
of implementation, operation, efc. issues
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Locally Respects

* r1s apolicy

e System X locally respects r if dom(c) being
noninterfering with d € D implies 6, ~ T(c,
c,)

e Intuition: applying ¢ under policy r to
system X has no effect on domain d when X
locally respects r
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Transition-Consistent

e rpolicy,de D
e If 6, ~* G, implies T(c, ) ~* T(c, G,),
system X transition-consistent under r

* Intuition: command c does not affect
equivalence of states under policy r
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Lemma

* ¢c,c,e C,de D
* For policy r, dom(c,)rd and dom(c,)rd
e Then
T*(c,c,,0) = 1(c,,1(c,,0)) = T(c,,1(c;,0))
e Intuition: if info can flow from domains of

commands 1nto d, then order doesn’t affect
result of applying commands
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Unwinding Theorem

e Links security of sequences of state
transition commands to security of
individual state transition commands

* Allows you to show a system design 1s ML
secure by showing it matches specs from
which certain lemmata derived

— Says nothing about security of system, because
of implementation, operation, efc. issues
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Locally Respects

* r1s apolicy

e System X locally respects r if dom(c) being
noninterfering with d € D implies 6, ~ T(c,
c,)

e Intuition: applying ¢ under policy r to
system X has no effect on domain d when X
locally respects r
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Transition-Consistent

e rpolicy,de D
e If 6, ~* G, implies T(c, ) ~* T(c, G,),
system X transition-consistent under r

* Intuition: command c does not affect
equivalence of states under policy r
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Lemma

* ¢c,c,e C,de D
* For policy r, dom(c,)rd and dom(c,)rd
e Then
T*(c,c,,0) = 1(c,,1(c,,0)) = T(c,,1(c;,0))
e Intuition: if info can flow from domains of

commands 1nto d, then order doesn’t affect
result of applying commands
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Theorem

e rpolicy, X system that is output consistent,
transition consistent, locally respects r

e X noninterference-secure with respect to policy r

e Significance: basis for analyzing systems claiming
to enforce noninterference policy

— Establish conditions of theorem for particular set of
commands, states with respect to some policy, set of
protection domains

— Noninterference security with respect to r follows
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Proof

e Must show 6, ~¢ G, implies
T*(c,, 6,) ~ T*(@ (c,), G,)
* Induct on length of c,

e Basis: ¢, =V, so T*(c,, 6) = G; W (V) = V;
claim holds

* Hypothesis: ¢, = ¢, ... ¢,; then claim holds
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Induction Step

* Consider cc,,,. Assume 6, ~¢ G, and look
4
at 7*(1’ (c.c,.1), Op)
e 2 cases:

— dom(c,,,)rd holds
— dom(c, ,,)rd does not hold
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dom(c,,,)rd Holds

TH( (¢ Cpi1)s Op) = TH( (€5 )C 41> Op)
= T(Cpyy» T (), Op))
— by definition of 7* and 1/,
* T(Cn+1’ Ga) ~ T(Cn+1’ Gb)
— as X transition-consistent and 6, ~¢ G,
° T(Cn+19T*(Csaca))~dT(Cn+19T>k(Tc,d(CS )9 Gb))

— by transition-consistency and IH
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dom(c,,,)rd Holds

T(Cn+1’T*(Cs’(;a))NdT(Cn+1’T>I< (Tc,d(cs )Cn+1’ Gb))
— by substitution from earlier equality

T(Cn+1’T*(Cs’(;a))NdT(Cn+1’T>I< (Tc,d(cs )Cn+1’ Gb))
— by definition of 7™

e proving hypothesis

June 1, 2004 Computer Security: Art and Science Slide #8-52
©2002-2004 Matt Bishop



dom(c,  ,)rd Does Not Hold

n+1

T*(T [(c,Cpy)s Op) = TH( (¢, ), Of)
— by definition of 1/,
T*(CS’ Gb) — T*(Tc,d(cscrﬁl)’ Gb)
— by above and IH
I(c,y, T*(cy, 0,)) ~ TH(cy, O,)
— as X locally respects r, so 6 ~¢ T(c,, ,, ©) for any ¢
T(Cn+1’T*(CS’Ga))NdT(CrHl’T*(Tc,d(cs )Cn+1’ Gb))
— substituting back
e proving hypothesis

June 1, 2004 Computer Security: Art and Science Slide #8-53
©2002-2004 Matt Bishop



Finishing Proot

e Take 6, =0, = G, so from claim proved by
induction,

T*(c,, 04) ~ T*(1 (c,), Op)
e By previous lemma, as X (and so ~“) output

consistent, then X 1s noninterference-secure
with respect to policy r
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Access Control Matrix

* Example of interpretation
e (Given: access control information

e Question: are given conditions enough to
provide noninterference security?

e Assume: system in a particular state

— Encapsulates values in ACM
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ACM Model

e Objects L={1,, ..., }
— Locations in memory

e Values V={v,...,v, }
— Values that L can assume

e Setof states2={0,...,0, }

* Set of protection domains D =4 d,, ...
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Functions

e value: LX>2—V

— returns value v stored in location [ when system 1n state ©
e read: D—2V

— returns set of objects observable from domain d

o write: D2V

— returns set of objects observable from domain d
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Interpretation of ACM

* Functions represent ACM
— Subject s in domain d, object o

— re Als, o] if o € read(d)
— we Als, o] if 0 € write(d)
e Equivalence relation:
[, ~dome) G, | VI € read(d)
| value(l,, 6,) = value(l,, G,) ] |

— You can read the exactly the same locations in both
states
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Enforcing Policy r

* 5 requirements

— 3 general ones describing dependence of
commands on rights over input and output

e Hold for all ACMs and policies
— 2 that are specific to some security policies

e Hold for most policies
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Enforcing Policy r: First

e Output of command c executed in domain
dom(c) depends only on values for which
subjects in dom(c) have read access

G, ~4m9) 6, = P(c,6,) = P(c, G,)
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Entorcing Policy r: Second

e If c changes [, then ¢ can only use values of
objects 1n read(dom(c)) to determine new
value
[ 6, ~4m) 5, and

(value(l,, T(c, 0,)) # value(l,, G ) or
value(l,, T(c, 6,)) # value(l,, 6,)) | =
value(l,, T(c, 6,,)) = value(l,, T(c, 0}))

June 1, 2004 Computer Security: Art and Science Slide #8-61
©2002-2004 Matt Bishop



Enforcing Policy r: Third

* It ¢ changes [, then dom(c) provides subject
executing ¢ with write access to /,

value(l,, T(c, 0,)) # value(l,, 0,) =

[. € write(dom(c))

June 1, 2004 Computer Security: Art and Science Slide #8-62
©2002-2004 Matt Bishop



Entorcing Policies r: Fourth

e [f domain u can interfere with domain v,
then every object that can be read in u can
also be read in v

* So if object o cannot be read 1n u, but can be
read in v; and object 0" in u can be read in v,
then info flows from o to o’, then to v

Letu,v e D;then urv = read(u) C read(v)
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Entorcing Policies r: Fifth

* Subject s can read object o in v, subject s’
can read o 1n u, then domain v can interfere
with domain u

[. € read(u) and [, € write(v) = vru
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Theorem

* Let X be a system satistying the five
conditions. The X 1s noninterference-secure
with respectto r

* Proof: must show X output-consistent,
locally respects r, transition-consistent

— Then by unwinding theorem, theorem holds
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Output-Consistent

e Take equivalence relation to be ~, first
condition is definition of output-consistent
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Locally Respects r

e Proof by contradiction: assume (dom(c),d) ¢ r but 6, ~¢
1(c, 0,) does not hold

* Some object has value changed by c:

11, € read(d) [ value(l,, 6,) # value(l, T(c,0,)) ]
e Condition 3: [; € write(d)
e (Condition 5: dom(c)rd, contradiction

e Soo, ~*T(c, 0, holds, meaning X locally respects r
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Transition Consistency

e Assume 6,~ G,
e Must show value(/, T(c, 6,)) = value(l,, T(c,
0,)) for [, € read(d)

e 3 cases dealing with change that ¢ makes in
[. 1n states 0, G,
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Case 1

* value(l, T(c, 6,)) # value(l,, ©,)
e Condition 3: [; € write(dom(c))
* As ! e read(d), condition 5 says dom(c)rd
e Condition 4 says read(dom(c)) C read(d)
e Aso,~0o,, 0, ~m) G,
e Condition 2:
* value(l, T(c, 6,)) = value(l,, T(c, G}))
e So T(c, 6,) ~%m) T(c, 6,), as desired
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Case 2

* value(l, T(c, 6,)) # value(l,, G)
e Condition 3: [; € write(dom(c))
* As ! e read(d), condition 5 says dom(c)rd
e Condition 4 says read(dom(c)) C read(d)
e Aso,~0o,, 0, ~m) G,
e Condition 2:
value(l,, T(c, 6,)) = value(l,, T(c, G,))
e So T(c, 6,) ~%m) T(c, 6,), as desired
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Case 3

* Neither of the previous two
— value(l,, T(c, 6,)) = value(l,, G )
— value(l,, T(c, 6,)) = value(l;, G})
e Interpretation of 6, ~¢ G, is:
tor [, € read(d), value(l,, 6,) = value(l.,, G,)
e So T(c,6,) ~*T(c, G,), as desired
e In all 3 cases, X transition-consistent
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Policies Changing Over Time

* Problem: previous analysis assumes static system
— Inreal life, ACM changes as system commands issued

e Example: w € C* leads to current state
— cando(w, s, 7) holds if s can execute z in current state
— Condition noninterference on cando

— If —cando(w, Lara, “write f’), Lara can’t interfere with
any other user by writing file f
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Generalize Noninterference

e G C § group of subjects, A C Z set of commands, p
predicate over elements of C*

e ¢, =(c¢y...,c,) € C*
e T/'(V)=vV
e w'((cyy...,c,))=(c/,...,c,))
- ¢/=vifp(c/,...,c )and c,=(s,z) withse Gandz € A

— ¢/ = c; otherwise
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Intuition

e T'(c,) =c,

* But if p holds, and element of ¢, involves
both command in A and subject in G,
replace corresponding element of ¢, with
empty command v

— Just like deleting entries from ¢ as 7, ; does
earlier
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Noninterference

* G, G’ c S groups of subjects, A C Z set of
commands, p predicate over C*

e Users in G executing commands in A are
noninterfering with users in G” under
condition p iff, forall c,e C*,all s € G,
proj(s, c,, 6;) = proj(s, ®”’(c,), C,)

— Written A,G :| G’ if p
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Example

 From earlier one, simple security policy
based on noninterference:

V(se S)V(ze 2)
[ {2}, {s} :| S if —cando(w, s, 7) ]

e If subject can’t execute command (the —
cando part), subject can’t use that command
to interfere with another subject
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Policies Changing Over Time

* Problem: previous analysis assumes static system
— Inreal life, ACM changes as system commands issued

e Example: w € C* leads to current state
— cando(w, s, 7) holds if s can execute z in current state
— Condition noninterference on cando

— If —cando(w, Lara, “write f’), Lara can’t interfere with
any other user by writing file f
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Generalize Noninterference

e G C § group of subjects, A C Z set of commands, p
predicate over elements of C*

e ¢, =(c¢y...,c,) € C*
e T/'(V)=vV
e w'((cyy...,c,))=(c/,...,c,))
- ¢/=vifp(c/,...,c )and c,=(s,z) withse Gandz € A

— ¢/ = c; otherwise
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Intuition

e T'(c,) =c,

* But if p holds, and element of ¢, involves
both command in A and subject in G,
replace corresponding element of ¢, with
empty command v

— Just like deleting entries from ¢ as 7, ; does
earlier

June 1, 2004 Computer Security: Art and Science Slide #8-79
©2002-2004 Matt Bishop



Noninterference

* G, G’ c S groups of subjects, A C Z set of
commands, p predicate over C*

e Users in G executing commands in A are
noninterfering with users in G” under
condition p iff, forall c,e C*,all s € G,
proj(s, ¢,, 6;) = proj(s, p"’(c,), G;)

— Written A,G :| G’ if p
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Example

 From earlier one, simple security policy
based on noninterference:

V(se S)V(ze 2)
[ {2}, {s} :| S if —cando(w, s, 7) ]

e If subject can’t execute command (the —
cando part), subject can’t use that command
to interfere with another subject
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Another Example

e Consider system 1n which rights can be
passed
— pass(s, 7) gives s right to execute z
-w, =V, ..., v, sequence of v, e C*

—previw )=w __;lastiwn) =v_
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Policy

* No subject s can use z to interfere if, in
previous state, s did not have right to z, and
no subject gave it to s

{z},{s}:ASif
[ —cando(prev(w), s, 2) A
[ cando(prev(w), s’, pass(s, z)) =
—last(w) = (s, pass(s, 2)) ] |
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Effect

* Suppose s, € § can execute pass(s,, 7)
e Forall we C*, cando(w, s, pass(s,, 7)) true
e Initially, cando(v, s,, z) false

e Let 7’ € Z be such that (s;, z') noninterfering
with (s,, z)
— So for each w, with v, = (s5, 7),
cando(w,, s,, z) = cando(w,_;, $,, 7)
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Effect

 Then policy says forall s € §
proj(s, ((s5, 2), (s, pass(s,, 2)),
(53, 2), (82, 2)), O) =
proj(s, (s, pass(sy, 2)), (s3, 2°), (85, 2)), ©)
* Sos,’s first execution of z does not attect
any subject’s observation of system
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Policy Composition I

e Assumed: Output function of input
— Means deterministic (else not function)

— Means uninterruptability (differences in timings
can cause differences in states, hence 1n
outputs)

e This result for deterministic,
noninterference-secure systems
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Compose Systems

 Louie, Dewey LOW
 Hughie HIGH

e b, output buffer b by

— Anyone can read it A +
b, input buffer b O\

— From HIGH source I@' Hughie
* Hughie reads from: ‘

— b,y (Louie writes) bpr ’K_/

— b,y (Louie, Dewey write)
— by, (Dewey writes)

June 1, 2004 Computer Security: Art and Science Slide #8-87
©2002-2004 Matt Bishop



Systems Secure

e All noninterference-

SCCUrc
. bL bH
— Hughie has no output I +
e So inputs don’t interfere
with it by "ﬁ

— Louie, Dewey have no |bLDH> Hughie

input

w =
* So (nonexistent) inputs

don’t interfere with
outputs

v
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Security of Composition

e Buffers finite, sends/receives blocking: composition
not secure!

— Example: assume b, b, ;; have capacity 1
e Algorithm:
1. Louie (Dewey) sends message to b, ,; (bpy)
— Fills buffer
2. Louie (Dewey) sends second message to b, (bpy)
3. Louie (Dewey) sends a0 (1) to b,

4. Louie (Dewey) sends message to b, ppy
— Signals Hughie that Louie (Dewey) completed a cycle

June 1, 2004 Computer Security: Art and Science Slide #8-89
©2002-2004 Matt Bishop



Hughie

* Reads bit from b,
— If 0, receive message from b,
— If 1, receive message from b,

e Receive on b,
— To wait for buffer to be filled
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Example

* Hughie reads O from b,

— Reads message from b,
 Now Louie’s second message goes into b, ,
— Louie completes setp 2 and writes O into b,
 Dewey blocked at step 1

— Dewey cannot write to b,

* Symmetric argument shows that Hughie reading 1
produces a 1 in b,

* So, input from b, copied to output b,
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Nondeducibility

e Noninterference: do state transitions caused
by high level commands interfere with
sequences of state transitions caused by low
level commands?

» Really case about inputs and outputs:

— Can low level subject deduce anything about
high level outputs from a set of low level
outputs?
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Example: 2-Bit System

e High operations change only High bit

— Similar for Low
e sO=(0,0)

e Commands (Heidi, xorl), (Lara, xor0),
(Lara, xorl), (Lara, xor0), (Heidi, xorl),
(Lara, xor0)

— Both bits output after each command

e Outputi1s: 00101011110101
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Security

e Not noninterference-secure w.r.t. Lara

— Lara sees output as 0001111
— Delete High and she sees 00111

e But Lara still cannot deduce the commands deleted

— Don’t affect values; only lengths

* So it is deducibly secure

— Lara can’t deduce the commands Heidi gave
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Event System

e 4-tuple (E, 1,0, T)

— E set of events

— I C E set of input events

— O c E set of output events

— T set of all finite sequences of events legal within system
e [FE partitioned into H, L

— H set of High events

— L set of Low events

June 1, 2004 Computer Security: Art and Science Slide #8-95
©2002-2004 Matt Bishop



More Events ...

e HANI set of High inputs

e HNO set of High outputs
e LNl set of Low inputs

e LNO set of Low outputs

e T,,, setof all possible sequences of Low events that are
legal within system

e w,:T—>T, . projection function deleting all High inputs
from trace

— Low observer should not be able to deduce anything about High
inputs from trace ¢, ,,, € T

low

June 1, 2004 Computer Security: Art and Science Slide #8-96
©2002-2004 Matt Bishop



Deducibly Secure

e System deducibly secure if, for every trace
t,,., € T, ., the corresponding set of high
level traces contains every possible trace f €
T tor which T, (1) = ¢, ,

— Given any ¢, , the trace t € T producing that
t, ., 18 equally likely to be any trace with 1, (7) =

l Low
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Example

e Back to our 2-bit machine
— Let xor0, xorl apply to both bits
— Both bits output after each command

e Initial state: (O, 1)

e Inputs: 1,0,1,0,1,0,

e Qutputs: 10 1001 01 10 10
e Lara (at Low) sees: 001100

— Does not know initial state, so does not know first input; but can
deduce fourth input is O

e Not deducibly secure
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Example

 Now xor0, xorl apply only to state bit with same
level as user

e Inputs: 1,0,1,0,1,0,
 Qutputs: 1011111011
e Larasees: 01101
* She cannot deduce anything about input
— Could be 0,0,1,0,41,0, or0,1,1,0,1,0, for example
e Deducibly secure
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Security of Composition

e In general: deducibly secure systems not
composable

o Strong noninterference: deducible security
+ requirement that no High output occurs
unless caused by a High input

— Systems meeting this property are composable
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Example

e 2-bit machine done earlier does not exhibit
strong noninterference
— Because 1t puts out High bit even when there 1s
no High input
e Modify machine to output only state bit at
level of latest input

— Now 1t exhibits strong noninterference
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Problem

e Too restrictive; 1t bans some systems that
are obviously secure

 Example: System upgrade reads Low
inputs, outputs those bits at High

— Clearly deducibly secure: low level user sees no
outputs

— Clearly does not exhibit strong noninterference,
as no high level inputs!
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Remove Determinism

* Previous assumption
— Input, output synchronous

— Output depends only on commands triggered
by input
e Sometimes absorbed into commands ...

— Input processed one datum at a time

e Not realistic
— In real systems, lots of asynchronous events
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Generalized Noninterference

* Nondeterministic systems meeting
noninterference property meet generalized
noninterference-secure property

— More robust than nondeducible security

because minor changes in assumptions affect
whether system 1s nondeducibly secure
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Example

e System with High Holly, Low lucy, text file at High
— File fixed size, symbol b marks empty space

— Holly can edit file, Lucy can run this program:

while true do begin
n := read integer from user;
if n > file length or char in file[n] = b then
print random character;
else
print char in file[n];
end;
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Security of System

e Not noninterference-secure

— High level inputs—Holly’s changes — affect low level
outputs

 May be deducibly secure
— Can Lucy deduce contents of file from program?

— If output meaningful (““This 1s right”) or close (“Thes is
right”), yes

— Otherwise, no

e So deducibly secure depends on which inferences
are allowed

June 1, 2004 Computer Security: Art and Science Slide #8-106
©2002-2004 Matt Bishop



Composition of Systems

* Does composing systems meeting
generalized noninterference-secure property
give you a system that also meets this
property?

e Define two systems (cat, dog)

e Compose them
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First System: cat

e Inputs, outputs can go

left or right
e After some number of HIGH HIGH
inputs, cat sends two > t >
lca
outputs LOW
P OW [ low
— First stop_count 0orl stop_count
— Second parity of High
inputs, outputs
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Noninterference-Secure?

e If even number of High inputs, output could be:
— 0 (even number of outputs)
— 1 (odd number of outputs)

e If odd number of High inputs, output could be:
— 0 (odd number of outputs)
— 1 (even number of outputs)

* High level inputs do not affect output
— So noninterference-secure
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Second System: dog

e High outputs to left

 Low outputs of O or 1

to right
: HIGH
* stop_count input from > dog
the left < GH LOW_
— When it arrives, dog stop_coury Oorl
emits O or 1 ]
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Noninterference-Secure?

* When stop_count arrives:

— May or may not be inputs for which there are no
corresponding outputs

— Parity of High inputs, outputs can be odd or even
— Hence dog emits O or 1

e High level inputs do not affect low level outputs
— So noninterference-secure

June 1, 2004 Computer Security: Art and Science Slide #8-111
©2002-2004 Matt Bishop



Compose Them

I‘HG[‘I> HIGH
- do
cat g
LOW
< LOW LOW > >
0orl stop_count Oorl

* Once sent, message arrives

— But stop_count may arrive before all inputs have generated corresponding
outputs

— If so, even number of High inputs and outputs on cat, but odd number on
dog

e Four cases arise
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The Cases

e cat, odd number of inputs, outputs; dog, even number of
inputs, odd number of outputs
— Input message from cat not arrived at dog, contradicting
assumption
e cat, even number of inputs, outputs; dog, odd number of
inputs, even number of outputs

— Input message from dog not arrived at cat, contradicting
assumption
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The Cases

e cat, odd number of inputs, outputs; dog, odd number of
inputs, even number of outputs
— dog sent even number of outputs to cat, so cat has had at least one
input from left
e cat, even number of inputs, outputs; dog, even number of
inputs, odd number of outputs

— dog sent odd number of outputs to cat, so cat has had at least one
input from left
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The Conclusion

e Composite system catdog emits O to left, 1 to right (or 1 to
left, O to right)

— Must have received at least one input from left

e Composite system catdog emits O to left, O to right (or 1 to
left, 1 to right)

— Could not have received any from left

* So, High inputs affect Low outputs

— Not noninterference-secure
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Feedback-Free Systems

e System has n distinct components

* Components ¢;, ¢; connected if any output of ¢; is input to

C;

* System is feedback-free it for all ¢; connected to ¢, ¢; not
connected to any c;

— Intuition: once information flows from one component to another,
no information flows back from the second to the first
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Feedback-Free Security

 Theorem: A teedback-free system
composed of noninterference-secure
systems 1s 1tself noninterference-secure
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Some Feedback

e Lemma: A noninterference-secure system can feed a high
level output o to a high level input i if the arrival of o at the

input of the next component is delayed until after the next
low level input or output

e Theorem: A system with feedback as described in the
above lemma and composed of noninterference-secure
systems 1is itself noninterference-secure
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Why Didn’t They Work?

* For compositions to work, machine must act
same way regardless of what precedes low
level input (high, low, nothing)

* dog does not meet this criterion
— If first input 1s stop_count, dog emits O

— If high level input precedes stop_count, dog
emits O or 1
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State Machine Model

e 2-bit machine, levels High, Low, meeting 4
properties:

1. For every input i,, state G,, there 1s an
element c,, € C* such that 7#(c,,, 0;) = G,
where G, # O,

—T* 1s total function, inputs and commands
always move system to a different state
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Property 2

e There is an equivalence relation = such that:

— If system in state 0, and high level sequence of inputs causes
transition from ©; to G;, then G, = G;

— It 6,= 0, and low level sequence of inputs iy, ..., i, causes system
in state O; to transition to 6;’, then there is a state 6, such that 6,
¢/ and the inputs i, ..., i, cause system in state ; to transition to

4
0,

e = holds if low level projections of both states are same
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Property 3

* Let 0, =0, If high level sequence of outputs
04, ..., 0, Indicate system 1n state O,
transitioned to state 6., then for some state
6/ with 6 = ¢/, high level sequence of
outputs o, ..., 0,,” indicates system in G,
transitioned to G

— High level outputs do not indicate changes in
low level projection of states
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Property 4

* Leto,=0; let ¢, d be high level output sequences, ¢ a low
level output. If ced indicates system in state O, transitions
to 6/, then there are high level output sequences ¢’ and d’
and state 6, such that c’ed” indicates system in state C;
transitions to state 6,

— Intermingled low level, high level outputs cause changes in low
level state reflecting low level outputs only
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Restrictiveness

e System 1s restrictive 1f 1t meets the
preceding 4 properties
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Composition

e Intuition: by 3 and 4, high level output
followed by low level output has same
effect as low level input, so composition of
restrictive systems should be restrictive
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Composite System

e System M,’s outputs are M,’s inputs
* W, W, states of M, M,

* States of composite system pairs of M, M,

states (LLy;, W,;)
* ¢ event causing transition

* ¢ causes transition from state (W, , W, ) to
state (L, \L,,) 1f any of 3 conditions hold
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Conditions

1. M, in state |, and e occurs, M, transitions to l,,; e not
an event for M,; and W, = W,,

2. M, 1n state |, and e occurs, M, transitions to W,,; e not
an event for M; and U, = i,

3. M, 1n state u,, and e occurs, M, transitions to U,,; M, in
state LL,, and e occurs, M, transitions to UL,,; e 1s input to
one machine, and output from other
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Intuition

* Event causing transition in composite
system causes transition 1n at least 1 of the
components

 If transition occurs in exactly one
component, event must not cause transition
in other component when not connected to
the composite system
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Equivalence tor Composite

e Equivalence relation for composite system
(0,0,)=-(0,0)1tt6,=06.and 0,=0,

e Corresponds to equivalence relation in
property 2 for component system
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Key Points

e Composing secure policies does not always
produce a secure policy

— The policies must be restrictive

e Noninterference policies prevent HIGH inputs
from affecting LOW outputs

— Prevents “writes down’ 1n broadest sense

e Nondeducibility policies prevent the inference of
HIGH inputs from LOW outputs

— Prevents “reads up” in broadest sense
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