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Chapter 16: Information Flow

• Entropy and analysis
• Non-lattice information flow policies
• Compiler-based mechanisms
• Execution-based mechanisms
• Examples
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Overview

• Basics and background
– Entropy

• Nonlattice flow policies
• Compiler-based mechanisms
• Execution-based mechanisms
• Examples

– Security Pipeline Interface
– Secure Network Server Mail Guard
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Basics

• Bell-LaPadula Model embodies
information flow policy
– Given compartments A, B, info can flow from

A to B iff B dom A
• Variables x, y assigned compartments x, y

as well as values
– If x = A and y = B, and A dom B, then y := x

allowed but not x := y
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Entropy and Information Flow

• Idea: info flows from x to y as a result of a
sequence of commands c if you can deduce
information about x before c from the value
in y after c

• Formally:
– s time before execution of c, t time after
– H(xs | yt) < H(xs | ys)
– If no y at time s, then H(xs | yt) < H(xs)
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Example 1

• Command is x := y + z; where:
– 0 ≤ y ≤ 7, equal probability
– z = 1 with prob. 1/2, z = 2 or 3 with prob. 1/4 each

• s state before command executed; t, after; so
– H(ys) = H(yt) = –8(1/8) lg (1/8) = 3
– H(zs) = H(zt) = –(1/2) lg (1/2) –2(1/4) lg (1/4) = 1.5

• If you know xt, ys can have at most 3 values, so
H(ys | xt) = –3(1/3) lg (1/3) = lg 3
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Example 2

• Command is
– if x = 1 then y := 0 else y := 1;

where:
– x, y equally likely to be either 0 or 1

• H(xs) = 1 as x can be either 0 or 1 with equal
probability

• H(xs | yt) = 0 as if yt = 1 then xs = 0 and vice versa
– Thus, H(xs | yt) = 0 < 1 = H(xs)

• So information flowed from x to y
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Implicit Flow of Information

• Information flows from x to y without an
explicit assignment of the form y := f(x)
– f(x) an arithmetic expression with variable x

• Example from previous slide:
– if x = 1 then y := 0
else y := 1;

• So must look for implicit flows of
information to analyze program
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Notation

• x means class of x
– In Bell-LaPadula based system, same as “label

of security compartment to which x belongs”
• x ≤ y means “information can flow from an

element in class of x to an element in class
of y
– Or, “information with a label placing it in class

x can flow into class y”
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Information Flow Policies

Information flow policies are usually:
• reflexive

– So information can flow freely among
members of a single class

• transitive
– So if information can flow from class 1 to class

2, and from class 2 to class 3, then information
can flow from class 1 to class 3
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Non-Transitive Policies

• Betty is a confident of Anne
• Cathy is a confident of Betty

– With transitivity, information flows from Anne
to Betty to Cathy

• Anne confides to Betty she is having an
affair with Cathy’s spouse
– Transitivity undesirable in this case, probably
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Non-Lattice Transitive Policies

• 2 faculty members co-PIs on a grant
– Equal authority; neither can overrule the other

• Grad students report to faculty members
• Undergrads report to grad students
• Information flow relation is:

– Reflexive and transitive
• But some elements (people) have no “least upper

bound” element
– What is it for the faculty members?
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Confidentiality Policy Model

• Lattice model fails in previous 2 cases
• Generalize: policy I = (SCI, ≤I, joinI):

– SCI set of security classes
– ≤I ordering relation on elements of SCI
– joinI function to combine two elements of SCI

• Example: Bell-LaPadula Model
– SCI set of security compartments
– ≤I ordering relation dom
– joinI function lub
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Confinement Flow Model

• (I, O, confine, →)
– I = (SCI, ≤I, joinI)
– O set of entities
– →: O×O with (a, b) ∈ → (written a → b) iff

information can flow from a to b
– for a ∈ O, confine(a) = (aL, aU) ∈ SCI×SCI with aL ≤I aU

• Interpretation: for a ∈ O, if x ≤I aU, info can flow from x to a,
and if aL ≤I x, info can flow from a to x

• So aL lowest classification of info allowed to flow out of a,
and aU highest classification of info allowed to flow into a
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Assumptions, etc.

• Assumes: object can change security classes
– So, variable can take on security class of its

data
• Object x has security class x currently
• Note transitivity not required
• If information can flow from a to b, then b

dominates a under ordering of policy I:
(∀ a, b ∈ O)[ a → b ⇒ aL ≤I bU ]
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Example 1

• SCI = { U, C, S, TS }, with U ≤I C, C ≤I S, and S
≤I TS

• a, b, c ∈ O
– confine(a) = [ C, C ]
– confine(b) = [ S, S ]
– confine(c) = [ TS, TS ]

• Secure information flows: a → b, a → c, b → c
– As aL ≤I bU, aL ≤I cU, bL ≤I cU
– Transitivity holds
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Example 2

• SCI, ≤I as in Example 1
• x, y, z ∈ O

– confine(x) = [ C, C ]
– confine(y) = [ S, S ]
– confine(z) = [ C, TS ]

• Secure information flows: x → y, x → z, y → z, z
→ x, z → y
– As xL ≤I yU, xL ≤I zU, yL ≤I zU, zL ≤I xU, zL ≤I yU
– Transitivity does not hold

•  y → z and z → x, but y → z  is false, because yL ≤I xU is false
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Transitive Non-Lattice Policies

• Q = (SQ, ≤Q) is a quasi-ordered set when ≤Q
is transitive and reflexive over SQ

• How to handle information flow?
– Define a partially ordered set containing quasi-

ordered set
– Add least upper bound, greatest lower bound to

partially ordered set
– It’s a lattice, so apply lattice rules!
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In Detail …
• ∀x ∈ SQ: let f(x) = { y | y ∈ SQ ∧ y ≤Q x }

– Define SQP = { f(x) | x ∈ SQ }
– Define ≤QP = { (x, y) | x, y ∈ SQ ∧ x ⊆ y }

• SQP partially ordered set under ≤QP
• f preserves order, so y ≤Q x iff f(x) ≤QP f(y)

• Add upper, lower bounds
– SQP′ = SQP ∪ { SQ, ∅ }
– Upper bound ub(x, y) = { z | z ∈ SQP ∧ x ⊆ z ∧ y ⊆ z }
– Least upper bound lub(x, y) = ∩ub(x, y)

• Lower bound, greatest lower bound defined analogously
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And the Policy Is …

• Now (SQP′, ≤QP) is lattice
• Information flow policy on quasi-ordered

set emulates that of this lattice!
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Nontransitive Flow Policies

• Government agency information flow
policy (on next slide)

• Entities public relations officers PRO,
analysts A, spymasters S
– confine(PRO) = { public, analysis }
– confine(A) = { analysis, top-level }
– confine(S) = { covert, top-level }
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Information Flow

• By confinement flow
model:
– PRO ≤ A, A ≤ PRO
– PRO ≤ S
– A ≤ S, S ≤ A

• Data cannot flow to
public relations
officers; not transitive
– S ≤ A, A ≤ PRO
– S ≤ PRO is false

top-level

analysis covert

public
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Transforming Into Lattice

• Rough idea: apply a special mapping to generate
a subset of the power set of the set of classes
– Done so this set is partially ordered
– Means it can be transformed into a lattice

• Can show this mapping preserves ordering
relation
– So it preserves non-orderings and non-transitivity of

elements corresponding to those of original set
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Dual Mapping

• R = (SCR, ≤R, joinR) reflexive info flow policy
• P = (SP, ≤P) ordered set

– Define dual mapping functions lR, hR: SCR→SP
• lR(x) = { x }
• hR(x) = { y | y ∈ SCR ∧ y ≤R x }

– SP contains subsets of SCR; ≤P subset relation
– Dual mapping function order preserving iff

(∀a, b ∈ SCR )[ a ≤R b ⇔ lR(a) ≤P hR(b) ]



July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #16-24

Theorem

Dual mapping from reflexive info flow policy
R to ordered set P order-preserving
Proof sketch: all notation as before
(⇒) Let a ≤R b. Then a ∈ lR(a), a ∈ hR(b), so
lR(a) ⊆ hR(b), or lR(a) ≤P hR(b)
(⇐) Let lR(a) ≤P hR(b). Then lR(a) ⊆ hR(b).
But lR(a) = { a }, so a ∈ hR(b), giving a ≤R b
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Info Flow Requirements

• Interpretation: let confine(x) = { xL, xU },
consider class y
– Information can flow from x to element of y iff

xL ≤R y, or lR(xL) ⊆ hR(y)
– Information can flow from element of y to x iff

y ≤R xU, or lR(y) ⊆ hR(xU)
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Revisit Government Example

• Information flow policy is R
• Flow relationships among classes are:

public ≤R public
public ≤R analysis analysis ≤R  analysis
public ≤R  covert covert ≤R  covert
public ≤R  top-level covert ≤R  top-level
analysis ≤R  top-level top-level ≤R  top-level
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Dual Mapping of R

• Elements lR, hR:
lR(public) = { public }
hR(public = { public }
lR(analysis) = { analysis }
hR(analysis) = { public, analysis }
lR(covert) = { covert }
hR(covert) = { public, covert }
lR(top-level) = { top-level }
hR(top-level) = { public, analysis, covert, top-level }
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confine

• Let p be entity of type PRO, a of type A, s
of type S

• In terms of P (not R), we get:
– confine(p) = [ { public }, { public, analysis } ]
– confine(a) = [ { analysis },

{ public, analysis, covert, top-level } ]
– confine(s) = [ { covert },

{ public, analysis, covert, top-level } ]
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And the Flow Relations Are …

• p → a as lR(p) ⊆ hR(a)
– lR(p) = { public }
– hR(a) = { public, analysis, covert, top-level }

• Similarly: a → p, p → s, a → s, s → a
• But s → p is false as lR(s) ⊄ hR(p)

– lR(s) = { covert }
– hR(p) = { public, analysis }
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Analysis

• (SP, ≤P) is a lattice, so it can be analyzed
like a lattice policy

• Dual mapping preserves ordering, hence
non-ordering and non-transitivity, of
original policy
– So results of analysis of (SP, ≤P) can be

mapped back into (SCR, ≤R, joinR)
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Compiler-Based Mechanisms

• Detect unauthorized information flows in a
program during compilation

• Analysis not precise, but secure
– If a flow could violate policy (but may not), it is

unauthorized
– No unauthorized path along which information could

flow remains undetected
• Set of statements certified with respect to

information flow policy if flows in set of
statements do not violate that policy
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Example

if x = 1 then y := a;
else y := b;
• Info flows from x and a to y, or from x and

b to y
• Certified only if x ≤ y and a ≤ y and b ≤ y

– Note flows for both branches must be true
unless compiler can determine that one branch
will never be taken
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Declarations

• Notation:
x: int class { A, B }

 means x is an integer variable with security
class at least lub{ A, B }, so lub{ A, B } ≤ x

• Distinguished classes Low, High
– Constants are always Low
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Input Parameters

• Parameters through which data passed into
procedure

• Class of parameter is class of actual
argument

ip: type class { ip }
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Output Parameters

• Parameters through which data passed out of
procedure
– If data passed in, called input/output parameter

• As information can flow from input parameters to
output parameters, class must include this:

op: type class { r1, …, rn }
where ri is class of ith input or input/output
argument
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Example

proc sum(x: int class { A };
var out: int class { A, B });

begin
out := out + x;

end;
• Require x ≤ out and out ≤ out
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Array Elements

• Information flowing out:
… := a[i]

Value of i, a[i] both affect result, so class is
lub{ a[i], i }

• Information flowing in:
a[i] := …

• Only value of a[i] affected, so class is a[i]
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Assignment Statements

x := y + z;
• Information flows from y, z to x, so this

requires lub{ y, z } ≤ x
More generally:
y := f(x1, …, xn)

• the relation lub{ x1, …, xn } ≤ y must hold
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Compound Statements

x := y + z; a := b * c – x;
• First statement: lub{ y, z } ≤ x
• Second statement: lub{ b, c, x } ≤ a
• So, both must hold (i.e., be secure)
More generally:
S1; … Sn;

• Each individual Si must be secure
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Conditional Statements
if x + y < z then a := b else d := b * c – x; end

• The statement executed reveals information about
x, y, z, so lub{ x, y, z } ≤ glb{ a, d }

More generally:
if f(x1, …, xn) then S1 else S2; end
• S1, S2 must be secure
• lub{ x1, …, xn } ≤
                     glb{y | y target of assignment in S1, S2 }
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Iterative Statements
while i < n do begin a[i] := b[i]; i := i + 1;

end

• Same ideas as for “if”, but must terminate
More generally:
while f(x1, …, xn) do S;
• Loop must terminate;
• S must be secure
• lub{ x1, …, xn } ≤
                            glb{y | y target of assignment in S }
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Iterative Statements
while i < n do begin a[i] := b[i]; i := i + 1; end

• Same ideas as for “if”, but must terminate
More generally:
while f(x1, …, xn) do S;
• Loop must terminate;
• S must be secure
• lub{ x1, …, xn } ≤
                            glb{y | y target of assignment in S }
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Goto Statements

• No assignments
– Hence no explicit flows

• Need to detect implicit flows
• Basic block is sequence of statements that

have one entry point and one exit point
– Control in block always flows from entry point

to exit point
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Example Program
proc tm(x: array[1..10][1..10] of int class {x};
    var y: array[1..10][1..10] of int class {y});
var i, j: int {i};
begin
b1 i := 1;
b2 L2:   if i > 10 goto L7;
b3 j := 1;
b4 L4:   if j > 10 then goto L6;
b5      y[j][i] := x[i][j]; j := j + 1; goto L4;
b6 L6:   i := i + 1; goto L2;
b7 L7:
end;
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Flow of Control

b1 b2 b7

b6
b3

b4

b5

i > n

i ≤ n

j > n

j ≤ n
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IFDs

• Idea: when two paths out of basic block, implicit
flow occurs
– Because information says which path to take

• When paths converge, either:
– Implicit flow becomes irrelevant; or
– Implicit flow becomes explicit

• Immediate forward dominator of basic block b
(written IFD(b)) is first basic block lying on all
paths of execution passing through b



July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #16-47

IFD Example

• In previous procedure:
– IFD(b1) = b2 one path
– IFD(b2) = b7 b2→b7 or b2→b3→b6→b2→b7

– IFD(b3) = b4 one path
– IFD(b4) = b6 b4→b6 or b4→b5→b6

– IFD(b5) = b4 one path
– IFD(b6) = b2 one path
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Requirements

• Bi is set of basic blocks along an execution path
from bi to IFD(bi)
– Analogous to statements in conditional statement

• xi1, …, xin variables in expression selecting which
execution path containing basic blocks in Bi used
– Analogous to conditional expression

• Requirements for secure:
– All statements in each basic blocks are secure
– lub{ xi1, …, xin } ≤
                               glb{ y | y target of assignment in Bi }
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Example of Requirements

• Within each basic block:
b1: Low ≤ i b3: Low ≤ j  b6: lub{ Low, i } ≤ i
b5: lub{ x[i][j], i, j } ≤ y[j][i] }; lub{ Low, j } ≤ j
– Combining, lub{ x[i][j], i, j } ≤ y[j][i] }
– From declarations, true when lub{ x, i } ≤ y

• B2 = {b3, b4, b5, b6}
– Assignments to i, j, y[j][i]; conditional is i ≤ 10
– Requires i ≤ glb{ i, j, y[j][i] }
– From declarations, true when i ≤ y
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Example (continued)

• B4 = { b5 }
– Assignments to j, y[j][i]; conditional is j ≤ 10
– Requires j ≤ glb{ j, y[j][i] }
– From declarations, means i ≤ y

• Result:
– Combine lub{ x, i } ≤ y; i ≤ y; i ≤ y
– Requirement is lub{ x, i } ≤ y
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Procedure Calls
tm(a, b);
From previous slides, to be secure, lub{ x, i } ≤ y must hold
• In call, x corresponds to a, y to b
• Means that lub{ a, i } ≤ b, or a ≤ b
More generally:
proc pn(i1, …, im: int; var o1, …, on: int)
begin S end;
• S must be secure
• For all j and k, if ij ≤ ok, then xj ≤ yk
• For all j and k, if oj ≤ ok, then  yj ≤ yk
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Exceptions
proc copy(x: int class { x };
                var y: int class Low)
var sum: int class { x };
    z: int class Low;
begin
     y := z := sum := 0;
     while z = 0 do begin
          sum := sum + x;
          y := y + 1;
     end
end
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Exceptions (cont)

• When sum overflows, integer overflow trap
– Procedure exits
– Value of x is MAXINT/y
– Info flows from y to x, but x ≤ y never checked

• Need to handle exceptions explicitly
– Idea: on integer overflow, terminate loop
on integer_overflow_exception sum do z := 1;

– Now info flows from sum to z, meaning sum ≤ z
– This is false (sum = { x } dominates z = Low)



July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #16-54

Infinite Loops
proc copy(x: int 0..1 class { x };
                var y: int 0..1 class Low)
begin
     y := 0;
     while x = 0 do
          (* nothing *);
     y := 1;
end
• If x = 0 initially, infinite loop
• If x = 1 initially, terminates with y set to 1
• No explicit flows, but implicit flow from x to y
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Semaphores

Use these constructs:
wait(x):   if x = 0 then block until x > 0; x := x – 1;
signal(x): x := x + 1;

– x is semaphore, a shared variable
– Both executed atomically

Consider statement
wait(sem); x := x + 1;

• Implicit flow from sem to x
– Certification must take this into account!
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Flow Requirements

• Semaphores in signal irrelevant
– Don’t affect information flow in that process

• Statement S is a wait
– shared(S): set of shared variables read

• Idea: information flows out of variables in shared(S)
– fglb(S): glb of assignment targets following S
– So, requirement is shared(S) ≤ fglb(S)

• begin S1; … Sn end
– All Si must be secure
– For all i, shared(Si) ≤ fglb(Si)
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Example
begin
    x := y + z;       (* S1 *)
    wait(sem);        (* S2 *)
    a := b * c – x;   (* S3 *)
end
• Requirements:

– lub{ y, z } ≤ x
– lub{ b, c, x } ≤ a
– sem ≤ a

• Because fglb(S2) = a and shared(S2) = sem
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Concurrent Loops

• Similar, but wait in loop affects all statements in
loop
– Because if flow of control loops, statements in loop

before wait may be executed after wait
• Requirements

– Loop terminates
– All statements S1, …, Sn in loop secure
– lub{ shared(S1), …, shared(Sn) } ≤ glb(t1, …, tm)

• Where t1, …, tm are variables assigned to in loop
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Loop Example
while i < n do begin
    a[i] := item;    (* S1 *)
    wait(sem);       (* S2 *)
    i := i + 1;      (* S3 *)
end
• Conditions for this to be secure:

– Loop terminates, so this condition met
– S1 secure if lub{ i, item } ≤ a[i]
– S2 secure if sem ≤ i and sem ≤ a[i]
– S3 trivially secure



July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #16-60

cobegin/coend
cobegin
     x := y + z;       (* S1 *)
     a := b * c – y;   (* S2 *)
coend

• No information flow among statements
– For S1, lub{ y, z } ≤ x
– For S2, lub{ b, c, y } ≤ a

• Security requirement is both must hold
– So this is secure if lub{ y, z } ≤ x ∧ lub{ b, c, y } ≤ a
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Soundness

• Above exposition intuitive
• Can be made rigorous:

– Express flows as types
– Equate certification to correct use of types
– Checking for valid information flows same as

checking types conform to semantics imposed
by security policy
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Execution-Based Mechanisms

• Detect and stop flows of information that violate
policy
– Done at run time, not compile time

• Obvious approach: check explicit flows
– Problem: assume for security, x ≤ y

if x = 1 then y := a;
– When x ≠ 1, x = High, y = Low, a = Low, appears

okay—but implicit flow violates condition!
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Fenton’s Data Mark Machine

• Each variable has an associated class
• Program counter (PC) has one too
• Idea: branches are assignments to PC, so

you can treat implicit flows as explicit flows
• Stack-based machine, so everything done

in terms of pushing onto and popping from
a program stack
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Instruction Description

• skip means instruction not executed
• push(x, x) means push variable x and its

security class x onto program stack
• pop(x, x) means pop top value and security

class from program stack, assign them to
variable x and its security class x
respectively



July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #16-65

Instructions

•  x := x + 1 (increment)
– Same as:
if PC ≤ x then x := x + 1 else skip

•  if x = 0 then goto n else x := x – 1 (branch
and save PC on stack)
– Same as:
if x = 0 then begin
push(PC, PC); PC := lub{PC, x}; PC := n;

  end else if PC ≤ x then
x := x - 1

else
skip;
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More Instructions

•  if’ x = 0 then goto n else x := x – 1
(branch without saving PC on stack)
– Same as:
if x = 0 then
if x ≤ PC then PC := n else skip
else
if PC ≤ x then x := x – 1 else skip
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More Instructions

•  return (go to just after last if)
– Same as:
pop(PC, PC);

•  halt (stop)
– Same as:
if program stack empty then halt

– Note stack empty to prevent user obtaining information
from it after halting
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Example Program
1 if x = 0 then goto 4 else x := x – 1
2 if z = 0 then goto 6 else z := z – 1
3 halt
4 z := z – 1
5 return
6 y := y – 1
7 return
• Initially x = 0 or x = 1, y = 0, z = 0
• Program copies value of x to y
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Example Execution
x y z PC PC stack check
1 0 0 1 Low —
0 0 0 2 Low — Low ≤ x
0 0 0 6 z (3, Low)
0 1 0 7 z (3, Low) PC ≤ y
0 1 0 3 Low —
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Handling Errors

• Ignore statement that causes error, but
continue execution
– If aborted or a visible exception taken, user

could deduce information
– Means errors cannot be reported unless user

has clearance at least equal to that of the
information causing the error
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Variable Classes

• Up to now, classes fixed
– Check relationships on assignment, etc.

• Consider variable classes
– Fenton’s Data Mark Machine does this for PC
– On assignment of form y := f(x1, …, xn), y

changed to lub{ x1, …, xn }
– Need to consider implicit flows, also
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Example Program
(* Copy value from x to y
 * Initially, x is 0 or 1 *)
proc copy(x: int class { x };

var y: int class { y })
var z: int class variable { Low };
begin

y := 0;
z := 0;
if x = 0 then z := 1;
if z = 0 then y := 1;

end;

• z changes when z assigned to
• Assume y <  x



July 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #16-73

Analysis of Example

• x = 0
–  z := 0 sets z to Low
–  if x = 0 then z := 1 sets z to 1 and z to x
–  So on exit, y = 0

• x = 1
–  z := 0 sets z to Low
–  if z = 0 then y := 1 sets y to 1 and checks that

lub{Low, z} ≤ y
–  So on exit, y = 1

• Information flowed from x to y even though y < x
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Handling This (1)

• Fenton’s Data Mark Machine detects
implicit flows violating certification rules
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Handling This (2)

• Raise class of variables assigned to in
conditionals even when branch not taken

• Also, verify information flow requirements even
when branch not taken

• Example:
– In if x = 0 then z := 1, z raised to x whether or

not x = 0
– Certification check in next statement, that z ≤ y, fails,

as z = x from previous statement, and y ≤ x
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Handling This (3)

• Change classes only when explicit flows occur,
but all flows (implicit as well as explicit) force
certification checks

• Example
– When x = 0, first “if” sets z to Low then checks x ≤ z
– When x = 1, first “if” checks that x ≤ z
– This holds if and only if x = Low

• Not possible as y < x = Low and there is no such class
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Example Information Flow
Control Systems

• Use access controls of various types to
inhibit information flows

• Security Pipeline Interface
– Analyzes data moving from host to destination

• Secure Network Server Mail Guard
– Controls flow of data between networks that

have different security classifications
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Security Pipeline Interface

• SPI analyzes data going to, from host
– No access to host main memory
– Host has no control over SPI

host

second disk

first diskSPI
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Use

• Store files on first disk
• Store corresponding crypto checksums on second

disk
• Host requests file from first disk

– SPI retrieves file, computes crypto checksum
– SPI retrieves file’s crypto checksum from second disk
– If a match, file is fine and forwarded to host
– If discrepency, file is compromised and host notified

• Integrity information flow restricted here
– Corrupt file can be seen but will not be trusted
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Secure Network Server Mail
Guard (SNSMG)

• Filters analyze outgoing messages
– Check authorization of sender
– Sanitize message if needed (words and viruses, etc.)

• Uses type checking to enforce this
– Incoming, outgoing messages of different type
– Only appropriate type can be moved in or out

MTA MTA

out in

filters
SECRET
computer

UNCLASSIFIED
computer
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Key Points

• Both amount of information, direction of
flow important
– Flows can be explicit or implicit

• Analysis assumes lattice model
– Non-lattices can be embedded in lattices

• Compiler-based checks flows at compile
time

• Execution-based checks flows at run time


