
June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-1

Chapter 23: Vulnerability
Analysis

• Background
• Penetration Studies
• Example Vulnerabilities
• Classification Frameworks
• Theory of Penetration Analysis

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-2

Overview

• What is a vulnerability?
• Penetration studies

– Flaw Hypothesis Methodology
– Examples

• Vulnerability examples
• Classification schemes

– RISOS, PA, NRL Taxonomy, Aslam’s Model
• Theory of penetration analysis

– Examples

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-3

Definitions

• Vulnerability, security flaw: failure of
security policies, procedures, and controls
that allow a subject to commit an action
that violates the security policy
– Subject is called an attacker
– Using the failure to violate the policy is

exploiting the vulnerability or breaking in

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-4

Formal Verification

• Mathematically verifying that a system
satisfies certain constraints

• Preconditions state assumptions about the
system

• Postconditions are result of applying
system operations to preconditions, inputs

• Required: postconditions satisfy constraints

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-5

Penetration Testing

• Testing to verify that a system satisfies certain
constraints

• Hypothesis stating system characteristics,
environment, and state relevant to vulnerability

• Result is compromised system state
• Apply tests to try to move system from state in

hypothesis to compromised system state

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-6

Notes

• Penetration testing is a testing technique, not a
verification technique
– It can prove the presence of vulnerabilities, but not the

absence of vulnerabilities
• For formal verification to prove absence, proof

and preconditions must include all external factors
– Realistically, formal verification proves absence of

flaws within a particular program, design, or
environment and not the absence of flaws in a
computer system (think incorrect configurations, etc.)

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-7

Penetration Studies

• Test for evaluating the strengths and effectiveness
of all security controls on system
– Also called tiger team attack or red team attack
– Goal: violate site security policy
– Not a replacement for careful design, implementation,

and structured testing
– Tests system in toto, once it is in place

• Includes procedural, operational controls as well as
technological ones

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-8

Goals

• Attempt to violate specific constraints in security
and/or integrity policy
– Implies metric for determining success
– Must be well-defined

• Example: subsystem designed to allow owner to
require others to give password before accessing
file (i.e., password protect files)
– Goal: test this control
– Metric: did testers get access either without a password

or by gaining unauthorized access to a password?

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-9

Goals

• Find some number of vulnerabilities, or
vulnerabilities within a period of time
– If vulnerabilities categorized and studied, can draw

conclusions about care taken in design,
implementation, and operation

– Otherwise, list helpful in closing holes but not more
• Example: vendor gets confidential documents, 30

days later publishes them on web
– Goal: obtain access to such a file; you have 30 days
– Alternate goal: gain access to files; no time limit (a

Trojan horse would give access for over 30 days)

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-10

Layering of Tests

1. External attacker with no knowledge of system
• Locate system, learn enough to be able to access it

2. External attacker with access to system
• Can log in, or access network servers
• Often try to expand level of access

3. Internal attacker with access to system
• Testers are authorized users with restricted accounts

(like ordinary users)
• Typical goal is to gain unauthorized privileges or

information

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-11

Layering of Tests (con’t)

• Studies conducted from attacker’s point of view
• Environment is that in which attacker would

function
• If information about a particular layer irrelevant,

layer can be skipped
– Example: penetration testing during design,

development skips layer 1
– Example: penetration test on system with guest

account usually skips layer 2

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-12

Methodology

• Usefulness of penetration study comes
from documentation, conclusions
– Indicates whether flaws are endemic or not
– It does not come from success or failure of

attempted penetration
• Degree of penetration’s success also a factor

– In some situations, obtaining access to
unprivileged account may be less successful
than obtaining access to privileged account

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-13

Flaw Hypothesis Methodology

1. Information gathering
• Become familiar with system’s functioning

2. Flaw hypothesis
• Draw on knowledge to hypothesize vulnerabilities

3. Flaw testing
• Test them out

4. Flaw generalization
• Generalize vulnerability to find others like it

5. (maybe) Flaw elimination
• Testers eliminate the flaw (usually not included)

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-14

Information Gathering

• Devise model of system and/or components
– Look for discrepancies in components
– Consider interfaces among components

• Need to know system well (or learn
quickly!)
– Design documents, manuals help

• Unclear specifications often misinterpreted, or
interpreted differently by different people

– Look at how system manages privileged users

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-15

Flaw Hypothesizing

• Examine policies, procedures
– May be inconsistencies to exploit
– May be consistent, but inconsistent with design or

implementation
– May not be followed

• Examine implementations
– Use models of vulnerabilities to help locate potential

problems
– Use manuals; try exceeding limits and restrictions; try

omitting steps in procedures

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-16

Flaw Hypothesizing (con’t)

• Identify structures, mechanisms controlling
system
– These are what attackers will use
– Environment in which they work, and were built, may

have introduced errors
• Throughout, draw on knowledge of other systems

with similarities
– Which means they may have similar vulnerabilities

• Result is list of possible flaws

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-17

Flaw Testing

• Figure out order to test potential flaws
– Priority is function of goals

• Example: to find major design or implementation problems,
focus on potential system critical flaws

• Example: to find vulnerability to outside attackers, focus on
external access protocols and programs

• Figure out how to test potential flaws
– Best way: demonstrate from the analysis

• Common when flaw arises from faulty spec, design, or
operation

– Otherwise, must try to exploit it

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-18

Flaw Testing (con’t)

• Design test to be least intrusive as possible
– Must understand exactly why flaw might arise

• Procedure
– Back up system
– Verify system configured to allow exploit

• Take notes of requirements for detecting flaw
– Verify existence of flaw

• May or may not require exploiting the flaw
• Make test as simple as possible, but success must be

convincing
– Must be able to repeat test successfully

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-19

Flaw Generalization

• As tests succeed, classes of flaws emerge
– Example: programs read input into buffer on stack,

leading to buffer overflow attack; others copy
command line arguments into buffer on stack ⇒ these
are vulnerable too

• Sometimes two different flaws may combine for
devastating attack
– Example: flaw 1 gives external attacker access to

unprivileged account on system; second flaw allows
any user on that system to gain full privileges ⇒ any
external attacker can get full privileges

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-20

Flaw Elimination

• Usually not included as testers are not best folks
to fix this
– Designers and implementers are

• Requires understanding of context, details of flaw
including environment, and possibly exploit
– Design flaw uncovered during development can be

corrected and parts of implementation redone
• Don’t need to know how exploit works

– Design flaw uncovered at production site may not be
corrected fast enough to prevent exploitation

• So need to know how exploit works

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-21

Michigan Terminal System

• General-purpose OS running on IBM 360,
370 systems

• Class exercise: gain access to terminal
control structures
– Had approval and support of center staff
– Began with authorized account (level 3)

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-22

Step 1: Information Gathering

• Learn details of system’s control flow and
supervisor
– When program ran, memory split into segments
– 0-4: supervisor, system programs, system state

• Protected by hardware mechanisms
– 5: system work area, process-specific information

including privilege level
• Process should not be able to alter this

– 6 on: user process information
• Process can alter these

• Focus on segment 5

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-23

Step 2: Information Gathering

• Segment 5 protected by virtual memory
protection system
– System mode: process can access, alter data in segment

5, and issue calls to supervisor
– User mode: segment 5 not present in process address

space (and so can’t be modified)
• Run in user mode when user code being executed
• User code issues system call, which in turn issues

supervisor call

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-24

How to Make a Supervisor Call
• System code checks parameters to ensure supervisor

accesses authorized locations only
– Parameters passed as list of addresses (X, X+1, X+2) constructed

in user segment
– Address of list (X) passed via register

X

X X + 1X + 2

X + 2 …

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-25

Step 3: Flaw Hypothesis
• Consider switch from user to system mode

– System mode requires supervisor privileges
• Found: a parameter could point to another element in

parameter list
– Below: address in location X+1 is that of parameter at X+2
– Means: system or supervisor procedure could alter parameter’s

address after checking validity of old address

X

X X + 1X + 2

X + 2 …

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-26

Step 4: Flaw Testing

• Find a system routine that:
– Used this calling convention;
– Took at least 2 parameters and altered 1
– Could be made to change parameter to any value (such

as an address in segment 5)
• Chose line input routine

– Returns line number, length of line, line read
• Setup:

– Set address for storing line number to be address of
line length

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-27

Step 5: Execution

• System routine validated all parameter addresses
– All were indeed in user segment

• Supervisor read input line
– Line length set to value to be written into segment 5

• Line number stored in parameter list
– Line number was set to be address in segment 5

• When line read, line length written into location
address of which was in parameter list
– So it overwrote value in segment 5

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-28

Step 6: Flaw Generalization

• Could not overwrite anything in segments 0-4
– Protected by hardware

• Testers realized that privilege level in segment 5
controlled ability to issue supervisor calls (as
opposed to system calls)
– And one such call turned off hardware protection for

segments 0-4 …
• Effect: this flaw allowed attackers to alter

anything in memory, thereby completely
controlling computer

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-29

Burroughs B6700

• System architecture: based on strict file typing
– Entities: ordinary users, privileged users, privileged

programs, OS tasks
• Ordinary users tightly restricted
• Other 3 can access file data without restriction but constrained

from compromising integrity of system
– No assemblers; compilers output executable code
– Data files, executable files have different types

• Only compilers can produce executables
• Writing to executable or its attributes changes its type to data

• Class exercise: obtain status of privileged user

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-30

Step 1: Information Gathering

• System had tape drives
– Writing file to tape preserved file contents
– Header record indicates file attributes

including type
• Data could be copied from one tape to

another
– If you change data, it’s still data

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-31

Step 2: Flaw Hypothesis

• System cannot detect change to executable
file if that file is altered off-line

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-32

Step 3: Flaw Testing

• Write small program to change type of any file
from data to executable
– Compiled, but could not be used yet as it would alter

file attributes, making target a data file
– Write this to tape

• Write a small utility to copy contents of tape 1 to
tape 2
– Utility also changes header record of contents to

indicate file was a compiler (and so could output
executables)

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-33

Creating the Compiler

• Run copy program
– As header record copied, type becomes “compiler”

• Reinstall program as a new compiler
• Write new subroutine, compile it normally, and

change machine code to give privileges to anyone
calling it (this makes it data, of course)
– Now use new compiler to change its type from data to

executable
• Write third program to call this

– Now you have privileges

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-34

Corporate Computer System

• Goal: determine whether corporate security
measures were effective in keeping external
attackers from accessing system

• Testers focused on policies and procedures
– Both technical and non-technical

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-35

Step 1: Information Gathering

• Searched Internet
– Got names of employees, officials
– Got telephone number of local branch, and

from them got copy of annual report
• Constructed much of the company’s

organization from this data
– Including list of some projects on which

individuals were working

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-36

Step 2: Get Telephone Directory

• Corporate directory would give more needed
information about structure
– Tester impersonated new employee

• Learned two numbers needed to have something delivered off-
site: employee number of person requesting shipment, and
employee’s Cost Center number

– Testers called secretary of executive they knew most
about

• One impersonated an employee, got executive’s employee
number

• Another impersonated auditor, got Cost Center number
– Had corporate directory sent to off-site “subcontractor”

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-37

Step 3: Flaw Hypothesis

• Controls blocking people giving passwords
away not fully communicated to new
employees
– Testers impersonated secretary of senior

executive
• Called appropriate office
• Claimed senior executive upset he had not been

given names of employees hired that week
• Got the names

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-38

Step 4: Flaw Testing

• Testers called newly hired people
– Claimed to be with computer center
– Provided “Computer Security Awareness Briefing”

over phone
– During this, learned:

• Types of computer systems used
• Employees’ numbers, logins, and passwords

• Called computer center to get modem numbers
– These bypassed corporate firewalls

• Success

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-39

Penetrating a System

• Goal: gain access to system
• We know its network address and nothing else
• First step: scan network ports of system

– Protocols on ports 79, 111, 512, 513, 514, and 540 are
typically run on UNIX systems

• Assume UNIX system; SMTP agent probably
sendmail
– This program has had lots of security problems
– Maybe system running one such version …

• Next step: connect to sendmail on port 25

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-40

Output of Network Scan
ftp 21/tcp File Transfer
telnet 23/tcp Telnet
smtp 25/tcp Simple Mail Transfer
finger 79/tcp Finger
sunrpc 111/tcp SUN Remote Procedure Call
exec 512/tcp remote process execution (rexecd)
login 513/tcp remote login (rlogind)
shell 514/tcp rlogin style exec (rshd)
printer 515/tcp spooler (lpd)
uucp 540/tcp uucpd
nfs 2049/tcp networked file system
xterm 6000/tcp x-windows server

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-41

Output of sendmail
220 zzz.com sendmail 3.1/zzz.3.9, Dallas, Texas, ready

at Wed, 2 Apr 97 22:07:31 CST
Version 3.1 has the “wiz” vulnerability that recognizes
the “shell” command … so let’s try it
Start off by identifying yourself

helo xxx.org
250 zzz.com Hello xxx.org, pleased to meet you

Now see if the “wiz” command works … if it says “command
unrecognized”, we’re out of luck

wiz
250 Enter, O mighty wizard!

It does! And we didn’t need a password … so get a shell
shell
#

And we have full privileges as the superuser, root

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-42

Penetrating a System (Revisited)

• Goal: from an unprivileged account on system,
gain privileged access

• First step: examine system
– See it has dynamically loaded kernel
– Program used to add modules is loadmodule and must

be privileged
– So an unprivileged user can run a privileged program

… this suggests an interface that controls this
– Question: how does loadmodule work?

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-43

loadmodule

• Validates module ad being a dynamic load module
• Invokes dynamic loader ld.so to do actual load;

also calls arch to determine system architecture
(chip set)
– Check, but only privileged user can call ld.so

• How does loadmodule execute these programs?
– Easiest way: invoke them directly using system(3),

which does not reset environment when it spawns
subprogram

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-44

First Try

• Set environment to look in local directory, write
own version of ld.so, and put it in local directory
– This version will print effective UID, to demonstrate

we succeeded
• Set search path to look in current working

directory before system directories
• Then run loadmodule

– Nothing is printed—darn!
– Somehow changing environment did not affect

execution of subprograms—why not?

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-45

What Happened

• Look in executable to see how ld.so, arch invoked
– Invocations are “/bin/ld.so”, “/bin/arch”
– Changing search path didn’t matter as never used

• Reread system(3) manual page
– It invokes command interpreter sh to run subcommands

• Read sh(1) manual page
– Uses IFS environment variable to separate words
– These are by default blanks … can we make it include

a “/”?
• If so, sh would see “/bin/ld.so” as “bin” followed by “ld.so”,

so it would look for command “bin”

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-46

Second Try

• Change value of IFS to include “/”
• Change name of our version of ld.so to bin

– Search path still has current directory as first
place to look for commands

• Run loadmodule
– Prints that its effective UID is 0 (root)

• Success!

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-47

Generalization

• Process did not clean out environment
before invoking subprocess, which
inherited environment
– So, trusted program working with untrusted

environment (input) … result should be
untrusted, but is trusted!

• Look for other privileged programs that
spawn subcommands
– Especially if they do so by calling system(3) …

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-48

Penetrating a System redux

• Goal: gain access to system
• We know its network address and nothing

else
• First step: scan network ports of system

– Protocols on ports 17, 135, and 139 are
typically run on Windows NT server systems

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-49

Output of Network Scan
qotd 17/tcp Quote of the Day
ftp 21/tcp File Transfer [Control]
loc-srv 135/tcp Location Service
netbios-ssn 139/tcp NETBIOS Session Service [JBP]

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-50

First Try

• Probe for easy-to-guess passwords
– Find system administrator has password

“Admin”
– Now have administrator (full) privileges on

local system
• Now, go for rights to other systems in

domain

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-51

Next Step

• Domain administrator installed service
running with domain admin privileges on
local system

• Get program that dumps local security
authority database
– This gives us service account password
– We use it to get domain admin privileges, and

can access any system in domain

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-52

Generalization

• Sensitive account had an easy-to-guess
password
– Possible procedural problem

• Look for weak passwords on other systems,
accounts

• Review company security policies, as well
as education of system administrators and
mechanisms for publicizing the policies

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-53

Debate

• How valid are these tests?
– Not a substitute for good, thorough specification,

rigorous design, careful and correct implementation,
meticulous testing

– Very valuable a posteriori testing technique
• Ideally unnecessary, but in practice very necessary

• Finds errors introduced due to interactions with
users, environment
– Especially errors from incorrect maintenance and

operation
– Examines system, site through eyes of attacker

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-54

Problems

• Flaw Hypothesis Methodology depends on
caliber of testers to hypothesize and
generalize flaws

• Flaw Hypothesis Methodology does not
provide a way to examine system
systematically
– Vulnerability classification schemes help here

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-55

Vulnerability Classification

• Describe flaws from differing perspectives
– Exploit-oriented
– Hardware, software, interface-oriented

• Goals vary; common ones are:
– Specify, design, implement computer system without

vulnerabilities
– Analyze computer system to detect vulnerabilities
– Address any vulnerabilities introduced during system

operation
– Detect attempted exploitations of vulnerabilities

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-56

Example Flaws

• Use these to compare classification schemes
• First one: race condition (xterm)
• Second one: buffer overflow on stack

leading to execution of injected code
(fingerd)

• Both are very well known, and fixes
available!
– And should be installed everywhere …

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-57

Flaw #1: xterm

• xterm emulates terminal under X11 window
system
– Must run as root user on UNIX systems

• No longer universally true; reason irrelevant here

• Log feature: user can log all input, output to file
– User names file
– If file does not exist, xterm creates it, makes owner the

user
– If file exists, xterm checks user can write to it, and if so

opens file to append log to it

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-58

File Exists

• Check that user can write to file requires special
system call
– Because root can append to any file, check in open will

always succeed

Check that user can write to file “/usr/tom/X”
if (access(“/usr/tom/X”, W_OK) == 0){

Open “/usr/tom/X” to append log entries
if ((fd = open(“/usr/tom/X”, O_WRONLY|O_APPEND))< 0){

/* handle error: cannot open file */
}

}

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-59

Problem

• Binding of file name “/usr/tom/X” to file object
can change between first and second lines
– (a) is at access; (b) is at open
– Note file opened is not file checked

/

etc

passwd X

open(“/usr/tom/X”, O_WRITE)

passwd data

/

etc

passwd

usr

access(“/usr/tom/X”, W_OK)

X datapasswd data
X data

(a) (b)

tom
X

usr

tom

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-60

Flaw #2: fingerd

• Exploited by Internet Worm of 1988
– Recurs in many places, even now

• finger client send request for information to
server fingerd (finger daemon)
– Request is name of at most 512 chars
– What happens if you send more?

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-61

main local
variables

return address
of main

other return
state info

gets local
variables

parameter to
gets

input buffer

main local

variables

address of

input buffer

other return

state info

gets local

variables

program to

invoke shell

After

message

Buffer Overflow
• Extra chars overwrite rest

of stack, as shown
• Can make those chars

change return address to
point to beginning of
buffer

• If buffer contains small
program to spawn shell,
attacker gets shell on
target system

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-62

Frameworks

• Goals dictate structure of classification scheme
– Guide development of attack tool ⇒ focus is on steps

needed to exploit vulnerability
– Aid software development process ⇒ focus is on

design and programming errors causing vulnerabilities
• Following schemes classify vulnerability as n-

tuple, each element of n-tuple being classes into
which vulnerability falls
– Some have 1 axis; others have multiple axes

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-63

Research Into Secure Operating
Systems (RISOS)

• Goal: aid computer, system managers in
understanding security issues in OSes, and help
determine how much effort required to enhance
system security

• Attempted to develop methodologies and
software for detecting some problems, and
techniques for avoiding and ameliorating other
problems

• Examined Multics, TENEX, TOPS-10, GECOS,
OS/MVT, SDS-940, EXEC-8

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-64

Classification Scheme

• Incomplete parameter validation
• Inconsistent parameter validation
• Implicit sharing of privileged/confidential data
• Asynchronous validation/inadequate serialization
• Inadequate

identification/authentication/authorization
• Violable prohibition/limit
• Exploitable logic error

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-65

Incomplete Parameter Validation
• Parameter not checked before use
• Example: emulating integer division in kernel (RISC chip

involved)
– Caller provided addresses for quotient, remainder
– Quotient address checked to be sure it was in user’s protection

domain
– Remainder address not checked

• Set remainder address to address of process’ level of privilege
• Compute 25/5 and you have level 0 (kernel) privileges

• Check for type, format, range of values, access rights,
presence (or absence)

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-66

Inconsistent Parameter
Validation

• Each routine checks parameter is in proper format
for that routine but the routines require different
formats

• Example: each database record 1 line, colons
separating fields
– One program accepts colons, newlines as pat of data

within fields
– Another program reads them as field and record

separators
– This allows bogus records to be entered

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-67

Implicit Sharing of Privileged /
Confidential Data

• OS does not isolate users, processes properly
• Example: file password protection

– OS allows user to determine when paging occurs
– Files protected by passwords

• Passwords checked char by char; stops at first incorrect char
– Position guess for password so page fault occurred

between 1st, 2nd char
• If no page fault, 1st char was wrong; if page fault, it was right

– Continue until password discovered

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-68

Asynchronous Validation /
Inadequate Serialization

• Time of check to time of use flaws,
intermixing reads and writes to create
inconsistencies

• Example: xterm flaw discussed earlier

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-69

Inadequate Identification /
Authorization / Authentication

• Erroneously identifying user, assuming another’s
privilege, or tricking someone into executing
program without authorization

• Example: OS on which access to file named
“SYS$*DLOC$” meant process privileged
– Check: can process access any file with qualifier name

beginning with “SYS” and file name beginning with
“DLO”?

– If your process can access file “SYSA*DLOC$”,
which is ordinary file, your process is privileged

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-70

Violable Prohibition / Limit

• Boundary conditions not handled properly
• Example: OS kept in low memory, user process

in high memory
– Boundary was highest address of OS
– All memory accesses checked against this
– Memory accesses not checked beyond end of high

memory
• Such addresses reduced modulo memory size

– So, process could access (memory size)+1, or word 1,
which is part of OS …

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-71

Exploitable Logic Error

• Problems not falling into other classes
– Incorrect error handling, unexpected side effects,

incorrect resource allocation, etc.
• Example: unchecked return from monitor

– Monitor adds 1 to address in user’s PC, returns
• Index bit (indicating indirection) is a bit in word
• Attack: set address to be –1; adding 1 overflows, changes

index bit, so return is to location stored in register 1
– Arrange for this to point to bootstrap program stored in

other registers
• On return, program executes with system privileges

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-72

Legacy of RISOS

• First funded project examining vulnerabilities
• Valuable insight into nature of flaws

– Security is a function of site requirements and threats
– Small number of fundamental flaws recurring in many

contexts
– OS security not critical factor in design of OSes

• Spurred additional research efforts into detection,
repair of vulnerabilities

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-73

Program Analysis (PA)

• Goal: develop techniques to find
vulnerabilities

• Tried to break problem into smaller, more
manageable pieces

• Developed general strategy, applied it to
several OSes
– Found previously unknown vulnerabilities

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-74

Classification Scheme
• Improper protection domain initialization and enforcement

– Improper choice of initial protection domain
– Improper isolation of implementation detail
– Improper change
– Improper naming
– Improper deallocation or deletion

• Improper validation
• Improper synchronization

– Improper indivisibility
– Improper sequencing

• Improper choice of operand or operation

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-75

Improper Choice of Initial
Protection Domain

• Initial incorrect assignment of privileges,
security and integrity classes

• Example: on boot, protection mode of file
containing identifiers of all users can be
altered by any user
– Under most policies, should not be allowed

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-76

Improper Isolation of
Implementation Detail

• Mapping an abstraction into an implementation in
such a way that the abstraction can be bypassed

• Example: virtual machines modulate length of
time CPU is used by each to send bits to each
other

• Example: Having raw disk accessible to system
as ordinary file, enabling users to bypass file
system abstraction and write directly to raw disk
blocks

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-77

Improper Change

• Data is inconsistent over a period of time
• Example: xterm flaw

– Meaning of “/usr/tom/X” changes between
access and open

• Example: parameter is validated, then
accessed; but parameter is changed
between validation and access
– Burroughs B6700 allowed allowed this

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-78

Improper Naming

• Multiple objects with same name
• Example: Trojan horse

– loadmodule attack discussed earlier; “bin”
could be a directory or a program

• Example: multiple hosts with same IP
address
– Messages may be erroneously routed

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-79

Improper Deallocation or
Deletion

• Failing to clear memory or disk blocks (or
other storage) after it is freed for use by
others

• Example: program that contains passwords
that a user typed dumps core
– Passwords plainly visible in core dump

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-80

Improper Validation

• Inadequate checking of bounds, type, or
other attributes or values

• Example: fingerd’s failure to check input
length

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-81

Improper Indivisibility

• Interrupting operations that should be
uninterruptable
– Often: “interrupting atomic operations”

• Example: mkdir flaw (UNIX Version 7)
– Created directories by executing privileged operation

to create file node of type directory, then changed
ownership to user

– On loaded system, could change binding of name of
directory to be that of password file after directory
created but before change of ownership

– Attacker can change administrator’s password

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-82

Improper Sequencing

• Required order of operations not enforced
• Example: one-time password scheme

– System runs multiple copies of its server
– Two users try to access same account

• Server 1 reads password from file
• Server 2 reads password from file
• Both validate typed password, allow user to log in
• Server 1 writes new password to file
• Server 2 writes new password to file

– Should have every read to file followed by a write, and
vice versa; not two reads or two writes to file in a row

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-83

Improper Choice of Operand or
Operation

• Calling inappropriate or erroneous
instructions

• Example: cryptographic key generation
software calling pseudorandom number
generators that produce predictable
sequences of numbers

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-84

Legacy

• First to explore automatic detection of
security flaws in programs and systems

• Methods developed but not widely used
– Parts of procedure could not be automated
– Complexity
– Procedures for obtaining system-independent

patterns describing flaws not complete

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-85

NRL Taxonomy

• Goals:
– Determine how flaws entered system
– Determine when flaws entered system
– Determine where flaws are manifested in system

• 3 different schemes used:
– Genesis of flaws
– Time of flaws
– Location of flaws

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-86

Intentional

Malicious

Trojan horse

Nonreplicating

Replicating
Trapdoor

Logic/time bomb

Nonmalicious

Covert channel

Other

Storage

Timing

Genesis of Flaws

• Inadvertent (unintentional) flaws classified using RISOS
categories; not shown above
– If most inadvertent, better design/coding reviews needed
– If most intentional, need to hire more trustworthy developers and

do more security-related testing

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-87

Time of Flaws

• Development phase: all activities up to release of initial version of
software

• Maintenance phase: all activities leading to changes in software
performed under configuration control

• Operation phase: all activities involving patching and not under
configuration control

Time of

introduction

Development

Maintenance

Operation

Requirement/specification/design

Source code

Object code

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-88

Location of Flaw

• Focus effort on locations where most flaws occur,
or where most serious flaws occur

Location

Software

Hardware

Operating system

Support

Application

Privileged utilities

Unprivileged utilities

System initialization
Memory management
Process management/scheduling
Device management
File management
Identification/authentication
Other/unknown

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-89

Legacy
• Analyzed 50 flaws
• Concluded that, with a large enough sample size, an

analyst could study relationships between pairs of classes
– This would help developers focus on most likely places, times,

and causes of flaws
• Focused on social processes as well as technical details

– But much information required for classification not available for
the 50 flaws

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-90

Aslam’s Model

• Goal: treat vulnerabilities as faults and
develop scheme based on fault trees

• Focuses specifically on UNIX flaws
• Classifications unique and unambiguous

– Organized as a binary tree, with a question at
each node. Answer determines branch you take

– Leaf node gives you classification
• Suited for organizing flaws in a database

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-91

Top Level

• Coding faults: introduced during software
development
– Example: fingerd’s failure to check length of input

string before storing it in buffer
• Emergent faults: result from incorrect

initialization, use, or application
– Example: allowing message transfer agent to forward

mail to arbitrary file on system (it performs according
to specification, but results create a vulnerability)

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-92

Coding Faults

• Synchronization errors: improper serialization of
operations, timing window between two
operations creates flaw
– Example: xterm flaw

• Condition validation errors: bounds not checked,
access rights ignored, input not validated,
authentication and identification fails
– Example: fingerd flaw

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-93

Emergent Faults

• Configuration errors: program installed incorrectly
– Example: tftp daemon installed so it can access any

file; then anyone can copy any file
• Environmental faults: faults introduced by

environment
– Example: on some UNIX systems, any shell with “-”

as first char of name is interactive, so find a setuid shell
script, create a link to name “-gotcha”, run it, and you
has a privileged interactive shell

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-94

Legacy

• Tied security flaws to software faults
• Introduced a precise classification scheme

– Each vulnerability belongs to exactly 1 class of
security flaws

– Decision procedure well-defined, unambiguous

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-95

Comparison and Analysis

• Point of view
– If multiple processes involved in exploiting the

flaw, how does that affect classification?
• xterm, fingerd flaws depend on interaction of two

processes (xterm and process to switch file objects;
fingerd and its client)

• Levels of abstraction
– How does flaw appear at different levels?

• Levels are abstract, design, implementation, etc.

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-96

xterm and PA Classification

• Implementation level
– xterm: improper change
– attacker’s program: improper deallocation or

deletion
– operating system: improper indivisibility

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-97

xterm and PA Classification

• Consider higher level of abstraction, where
directory is simply an object
– create, delete files maps to writing; read file status,

open file maps to reading
– operating system: improper sequencing

• During read, a write occurs, violating Bernstein conditions

• Consider even higher level of abstraction
– attacker’s process: improper choice of initial protection

domain
• Should not be able to write to directory containing log file
• Semantics of UNIX users require this at lower levels

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-98

xterm and RISOS Classification

• Implementation level
– xterm: asynchronous validation/inadequate

serialization
– attacker’s process: exploitable logic error and

violable prohibition/limit
– operating system: inconsistent parameter

validation

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-99

xterm and RISOS Classification

• Consider higher level of abstraction, where
directory is simply an object (as before)
– all: asynchronous validation/inadequate

serialization
• Consider even higher level of abstraction

– attacker’s process: inadequate
identification/authentication/authorization

• Directory with log file not protected adequately
• Semantics of UNIX require this at lower levels

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-100

xterm and NRL Classification

• Time, location unambiguous
– Time: during development
– Location: Support:privileged utilities

• Genesis: ambiguous
– If intentional:

• Lowest level: inadvertent flaw of serialization/aliasing
– If unintentional:

• Lowest level: nonmalicious: other
– At higher levels, parallels that of RISOS

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-101

xterm and Aslam’s Classification

• Implementation level
– attacker’s process: object installed with incorrect

permissions
• attacker’s process can delete file

– xterm: access rights validation error
• xterm doesn’t properly validate file at time of access

– operating system: improper or inadequate serialization
error

• deletion, creation should not have been interspersed with
access, open

– Note: in absence of explicit decision procedure, all
could go into class race condition

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-102

The Point

• The schemes lead to ambiguity
– Different researchers may classify the same

vulnerability differently for the same
classification scheme

• Not true for Aslam’s, but that misses
connections between different
classifications
– xterm is race condition as well as others;

Aslam does not show this

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-103

fingerd and PA Classification

• Implementation level
– fingerd: improper validation
– attacker’s process: improper choice of operand

or operation
– operating system: improper isolation of

implementation detail

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-104

fingerd and PA Classification

• Consider higher level of abstraction, where
storage space of return address is object
– operating system: improper change
– fingerd: improper validation

• Because it doesn’t validate the type of instructions to be
executed, mistaking data for valid ones

• Consider even higher level of abstraction, where
security-related value in memory is changing and
data executed that should not be executable
– operating system: improper choice of initial protection

domain

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-105

fingerd and RISOS Classification

• Implementation level
– fingerd: incomplete parameter validation
– attacker’s process: violable prohibition/limit
– operating system: inadequate

identification/authentication/authorization

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-106

fingerd and RISOS Classification

• Consider higher level of abstraction, where
storage space of return address is object
– operating system: asynchronous validation/inadequate

serialization
– fingerd: inadequate

identification/authentication/authorization
• Consider even higher level of abstraction, where

security-related value in memory is changing and
data executed that should not be executable
– operating system: inadequate

identification/authentication/authorization

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-107

fingerd and NRL Classification

• Time, location unambiguous
– Time: during development
– Location: support: privileged utilities

• Genesis: ambiguous
– Known to be inadvertent flaw
– Parallels that of RISOS

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-108

fingerd and Aslam Classification

• Implementation level
– fingerd: boundary condition error
– attacker’s process: boundary condition error

• operating system: environmental fault
– If decision procedure not present, could also have been

access rights validation errors

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-109

Theory of Penetration

• Goal: detect previously undetected flaws
• Based on two hypotheses:

– Hypothesis of Penetration Patterns
– Hypothesis of Penetration-Resistent Systems

• Idea: formulate principles consistent with
these hypotheses and check system for
inconsistencies

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-110

Hypothesis of Penetration
Patterns

System flaws that cause a large class of
penetration patterns can be identified in
system (i.e., TCB) source code as
incorrect/absent condition checks or
integrated flows that violate the intentions of
the system designers.

– Meaning: an appropriate set of design,
implementation principles will prevent
vulnerabilities

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-111

Hypothesis of Penetration-
Resistent Systems

A system (i.e., TCB) is largely resistant to
penetration if it adheres to a specific set of design
properties.
Example properties:

– Users must not be able to tamper with system
– System must check all references to objects
– Global objects belonging to the system must be

consistent with respect to both timing and storage
– Undesirable system and user dependencies must be

eliminated

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-112

Flow-Based Model

• Focus on flow of control during parameter
validation

• Consider rmdir(fname)
– Allocates space for copy of parameter on stack
– Copies parameter into allocated storage

• Control flows through 3 steps:
– Allocation of storage
– Binding of parameter with formal argument
– Copying formal argument (parameter) to storage

• Problem: length of parameter not checked

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-113

Model

• System is sequence of states, transitions
• Abstract cell set C = { ci }

– Set of system entities that hold information
• System function set F = { fi }

– All system functions user may invoke
– Z ⊆ F contains those involving time delays

• System condition set R = { ri }
– Set of all parameter checks

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-114

More Model
• Information flow set IF = C × C

– Set of all possible information flows between pairs of
abstract cells

– (ci, cj) means information flows from ci to cj

• Call relationship set SF = F × F
– Set of all possible information flows between pairs of

system functions
– (fi, fj) means fi calls fj or fi returns to fj

• These capture flow of information, control
throughout system

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-115

System-Critical Functions

• Functions that analysts deem critical with respect
to penetration
– Functions that cause time delays, because they may

allow window during which checked parameters are
changed

– Functions that can cause system crash
• System-critical function set K
• System entry points E

– Gates through which user processes invoke system
functions

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-116

rmdir

TCB entry point rmdir(fname)

dststr = local buffer buf
buf dststr

srcstr = fname
fname srcstr

function call to strcpy
copy from srcstr to dststr

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-117

rmdir and Model

• fname ∈ C
– Points to global entity

• rmdir ∈ F, rmdir ∈ E
– System function and also entry point

• fname cannot be illegal address
– islegal(fname) ∈ R

• length of fname less than that of buf
– length(fname) < spacefor(buf) ∈ R

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-118

rmdir and Model

• strcpy ∈ K
– Because strcpy does not check source,

destination bounds
• (fname, buf) ∈ IF

– Because information flows from fname to buf
• (rmdir, strcpy) ∈ SF

– Because rmdir calls strcpy

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-119

More Model
• Alter set AC = { (ci, Ri) }, Ri ⊆ R
• View set VC = { (ci, Ri′) }, Ri ⊆ R

– Set of abstract cells that can be altered/viewed and
conditions that must be validated first

• Element(ci, Ri) predicate
– Conditions in Ri ⊆ R must be checked before ci viewed

or altered
• Critical function set KF = { (ki, Ri′′) }, Ri ⊆ R
• Entry point set EF = { (ei, Ri′′′) }, Ri ⊆ R

– Analogous to AC

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-120

More rmdir

• strcpy must validate fname’s address as
legal before viewing fname

• strcpy must validate that size of fname is
small enough to fit in buf before altering buf

• Hence:
(strcpy, islegal(fname) ∧ length(fname)<spacefor(buf)) ∈ KF

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-121

History of Transitions

• Altered cells set ACS = { (ci, ei, pci) }
• Viewed cells set VCS = { (ci, ei, pci′) }

– ci has been altered/viewed by invoking entry point ei,
and pci, pci′ ⊆ IF∪SF∪R sequence of information
flows, function flows, conditions along path

• Critical functions invoked set KCS={(ki, ei, pci′′) }
– Like ACS, but ki has been invoked by invoking entry

point ei

• (ACS, VCS, KCS) make up state of system

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-122

Penetration-Resistant State: Idea

• If the system function checks all conditions on the
global variables to be altered or viewed, and all
conditions on the system-critical functions, then
system cannot be penetrated using a technique
that exploits failure to check conditions
– Need to check on entry
– Need to check conditions on memory locations or

system-critical functions
– Need to check changes in previously checked

parameters as result of time delay caused by a function

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-123

Penetration-Resistant State

State that meets the following requirements:
1. For all states (c, e, p) ∈ ACS:

a) Conditions associated with e ∈ EF subset of conditions
checked in p

b) Conditions associated with cell c ∈ AC subset of conditions
checked in p

c) A subsequence of p contains the last element of p, the
conditions in part b, and does not contain any elements (f, g) ∈
SF with f ∈ Z or g ∈ Z

2. Requirement 1, but for VCS rather than ACS
3. Requirement 1, but for (k, e, p) ∈ KFS rather than ACS

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-124

State Transition Rules

• Control updating of information as system
changes

• τ state transition function
• Σ = (ACS, VCS, KCS)
• τ(Σ) = Σ′ = (ACS′, VCS′, KCS′)
• Functions are alter_cell, view_cell,

invoke_crit_func

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-125

Altering Cells

• alter_cell(c, e, p)
– Check:

• c ∈ C, e ∈ E, p ⊆ IF ∪ SF ∪ R
• Requirement 1 holds

– If so:
• ACS′ = ACS ∪ { (c, e, p) }
• VCS′ = VCS
• KCS′ = KCS

– If not, new state is not penetration-resistant

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-126

Viewing Cells

• view_cell(c, e, p)
– Check:

• c ∈ C, e ∈ E, p ⊆ IF ∪ SF ∪ R
• Requirement 2 holds

– If so:
• ACS′ = ACS
• VCS′ = VCS ∪ { (c, e, p) }
• KCS′ = KCS

– If not, new state is not penetration-resistant

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-127

Invoking Critical Functions

• invoke_crit_func(k, e, p)
– Check:

• k ∈ K, e ∈ E, p ⊆ IF ∪ SF ∪ R
• Requirement 3 holds

– If so:
• ACS′ = ACS
• VCS′ = VCS
• KCS′ = KCS ∪ { (k, e, p) }

– If not, new state is not penetration-resistant

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-128

Penetration Resistance

• Theorem: Let the system be in a state that
is penetration-resistant. Then if a state
transition function is applied to the current
state, the resulting state will also be
penetration-resistant.

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-129

rmdir Again

• Assume system in penetration-resistant state
• invoke_crit_func(strcpy, rmdir, p)
• Requirement 3 must hold

– No conditions associated with entry point rmdir, so 3a
holds

– Conditions for strcpy not checked within TCB, so {
islegal(fname) ∧ length(fname)<spacefor(buf) } ⊄ p

– Requirement 3 does not hold
• System no longer in penetration-resistant state

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-130

Automated Penetration Analysis
Tool

• APA performed this testing automatically
– Primitive flow generator reduces statements to Prolog

facts recording needed information
– Information flow integrator, function flow integrator

integrate execution path derived from primitive flow
statements

– Condition set consistency prover analyzes conditions
along execution path, reports inconsistencies

– Flaw decision module determines whether conditions
for each entry point correspond to penetration-resistant
specs (applies Hypothesis of Penetration Patterns)

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-131

Questions

• Can this technique be generalized to types
of flaws other than consistency checking?

• Can this theory be generalized to classify
vulnerabilities?

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-132

Summary

• Classification schemes requirements
– Decision procedure for classifying vulnerability
– Each vulnerability should have unique

classification
• Above schemes do not meet these criteria

– Inconsistent among different levels of
abstraction

– Point of view affects classification

June 1, 2004 Computer Security: Art and Science
©2004 Matt Bishop

Slide #23-133

Key Points

• Given large numbers of non-secure systems
in use now, unrealistic to expect less
vulnerable systems to replace them

• Penetration studies are effective tests of
systems provided the test goals are known
and tests are structured well

• Vulnerability classification schemes aid in
flaw generalization and hypothesis

