
June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-1

Chapter 25: Intrusion Detection

• Principles
• Basics
• Models of Intrusion Detection
• Architecture of an IDS
• Organization
• Incident Response

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-2

Principles of Intrusion Detection

• Characteristics of systems not under attack
– User, process actions conform to statistically

predictable pattern
– User, process actions do not include sequences of

actions that subvert the security policy
– Process actions correspond to a set of specifications

describing what the processes are allowed to do
• Systems under attack do not meet at least one of

these

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-3

Example

• Goal: insert a back door into a system
– Intruder will modify system configuration file or

program
– Requires privilege; attacker enters system as an

unprivileged user and must acquire privilege
• Nonprivileged user may not normally acquire privilege

(violates #1)
• Attacker may break in using sequence of commands that

violate security policy (violates #2)
• Attacker may cause program to act in ways that violate

program’s specification

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-4

Basic Intrusion Detection

• Attack tool is automated script designed to
violate a security policy

• Example: rootkit
– Includes password sniffer
– Designed to hide itself using Trojaned versions

of various programs (ps, ls, find, netstat, etc.)
– Adds back doors (login, telnetd, etc.)
– Has tools to clean up log entries (zapper, etc.)

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-5

Detection

• Rootkit configuration files cause ls, du, etc.
to hide information
– ls lists all files in a directory

• Except those hidden by configuration file
– dirdump (local program to list directory

entries) lists them too
• Run both and compare counts
• If they differ, ls is doctored

• Other approaches possible

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-6

Key Point

• Rootkit does not alter kernel or file
structures to conceal files, processes, and
network connections
– It alters the programs or system calls that

interpret those structures
– Find some entry point for interpretation that

rootkit did not alter
– The inconsistency is an anomaly (violates #1)

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-7

Denning’s Model

• Hypothesis: exploiting vulnerabilities
requires abnormal use of normal commands
or instructions
– Includes deviation from usual actions
– Includes execution of actions leading to break-

ins
– Includes actions inconsistent with

specifications of privileged programs

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-8

Goals of IDS

• Detect wide variety of intrusions
– Previously known and unknown attacks
– Suggests need to learn/adapt to new attacks or changes

in behavior
• Detect intrusions in timely fashion

– May need to be be real-time, especially when system
responds to intrusion

• Problem: analyzing commands may impact response time of
system

– May suffice to report intrusion occurred a few minutes
or hours ago

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-9

Goals of IDS

• Present analysis in simple, easy-to-understand
format
– Ideally a binary indicator
– Usually more complex, allowing analyst to examine

suspected attack
– User interface critical, especially when monitoring

many systems
• Be accurate

– Minimize false positives, false negatives
– Minimize time spent verifying attacks, looking for them

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-10

Models of Intrusion Detection

• Anomaly detection
– What is usual, is known
– What is unusual, is bad

• Misuse detection
– What is bad, is known
– What is not bad, is good

• Specification-based detection
– What is good, is known
– What is not good, is bad

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-11

Anomaly Detection

• Analyzes a set of characteristics of system,
and compares their values with expected
values; report when computed statistics do
not match expected statistics
– Threshold metrics
– Statistical moments
– Markov model

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-12

Threshold Metrics

• Counts number of events that occur
– Between m and n events (inclusive) expected

to occur
– If number falls outside this range, anomalous

• Example
– Windows: lock user out after k failed

sequential login attempts. Range is (0, k–1).
• k or more failed logins deemed anomalous

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-13

Difficulties

• Appropriate threshold may depend on non-
obvious factors
– Typing skill of users
– If keyboards are US keyboards, and most users

are French, typing errors very common
• Dvorak vs. non-Dvorak within the US

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-14

Statistical Moments

• Analyzer computes standard deviation (first
two moments), other measures of
correlation (higher moments)
– If measured values fall outside expected

interval for particular moments, anomalous
• Potential problem

– Profile may evolve over time; solution is to
weigh data appropriately or alter rules to take
changes into account

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-15

Example: IDES

• Developed at SRI International to test Denning’s
model
– Represent users, login session, other entities as ordered

sequence of statistics <q0,j, …, qn,j>
– qi,j (statistic i for day j) is count or time interval
– Weighting favors recent behavior over past behavior

• Ak,j sum of counts making up metric of kth statistic on jth day
• qk,l+1 = Ak,l+1 – Ak,l + 2–rtqk,l where t is number of log

entries/total time since start, r factor determined through
experience

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-16

Example: Haystack

• Let An be nth count or time interval statistic
• Defines bounds TL and TU such that 90% of

values for Ais lie between TL and TU

• Haystack computes An+1
– Then checks that TL ≤ An+1 ≤ TU

– If false, anomalous
• Thresholds updated

– Ai can change rapidly; as long as thresholds met, all is well

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-17

Potential Problems

• Assumes behavior of processes and users
can be modeled statistically
– Ideal: matches a known distribution such as

Gaussian or normal
– Otherwise, must use techniques like clustering

to determine moments, characteristics that
show anomalies, etc.

• Real-time computation a problem too

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-18

Markov Model

• Past state affects current transition
• Anomalies based upon sequences of events, and

not on occurrence of single event
• Problem: need to train system to establish valid

sequences
– Use known, training data that is not anomalous
– The more training data, the better the model
– Training data should cover all possible normal uses of

system

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-19

Example: TIM

• Time-based Inductive Learning
• Sequence of events is abcdedeabcabc
• TIM derives following rules:

R1: ab→c (1.0) R2: c→d (0.5) R3: c→e (0.5)
R4: d→e (1.0) R5: e→a (0.5) R6: e→d (0.5)

• Seen: abd; triggers alert
– c always follows ab in rule set

• Seen: acf; no alert as multiple events can follow c
– May add rule R7: c→f (0.33); adjust R2, R3

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-20

Sequences of System Calls

• Forrest: define normal behavior in terms of
sequences of system calls (traces)

• Experiments show it distinguishes sendmail
and lpd from other programs

• Training trace is:
open read write open mmap write fchmod close

• Produces following database:

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-21

Traces
open read write open
open mmap write fchmod
read write open mmap
write open mmap write
write fchmod close
mmap write fchmod close
fchmod close
close

• Trace is:
open read read open mmap write fchmod close

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-22

Analysis

• Differs in 5 places:
– Second read should be write (first open line)
– Second read should be write (read line)
– Second open should be write (read line)
– mmap should be open (read line)
– write should be mmap (read line)

• 18 possible places of difference
– Mismatch rate 5/18 ≈ 28%

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-23

Derivation of Statistics

• IDES assumes Gaussian distribution of
events
– Experience indicates not right distribution

• Clustering
– Does not assume a priori distribution of data
– Obtain data, group into subsets (clusters) based

on some property (feature)
– Analyze the clusters, not individual data points

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-24

Example: Clustering
 proc user value percent clus#1 clus#2

p1 matt 359 100% 4 2
p2 holly 10 3% 1 1
p3 heidi 263 73% 3 2
p4 steven 68 19% 1 1
p5 david 133 37% 2 1
p6 mike 195 54% 3 2

• Clus#1: break into 4 groups (25% each); 2, 4 may be
anomalous (1 entry each)

• Clus#2: break into 2 groups (50% each)

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-25

Finding Features

• Which features best show anomalies?
– CPU use may not, but I/O use may

• Use training data
– Anomalous data marked
– Feature selection program picks features,

clusters that best reflects anomalous data

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-26

Example

• Analysis of network traffic for features enabling
classification as anomalous

• 7 features
– Index number
– Length of time of connection
– Packet count from source to destination
– Packet count from destination to source
– Number of data bytes from source to destination
– Number of data bytes from destination to source
– Expert system warning of how likely an attack

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-27

Feature Selection

• 3 types of algorithms used to select best feature set
– Backwards sequential search: assume full set, delete

features until error rate minimized
• Best: all features except index (error rate 0.011%)

– Beam search: order possible clusters from best to
worst, then search from best

– Random sequential search: begin with random feature
set, add and delete features

• Slowest
• Produced same results as other two

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-28

Results

• If following features used:
– Length of time of connection
– Number of packets from destination
– Number of data bytes from source

Classification error less than 0.02%
• Identifying type of connection (like SMTP)

– Best feature set omitted index, number of data bytes
from destination (error rate 0.007%)

– Other types of connections done similarly, but used
different sets

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-29

Misuse Modeling

• Determines whether a sequence of instructions
being executed is known to violate the site
security policy
– Descriptions of known or potential exploits grouped

into rule sets
– IDS matches data against rule sets; on success,

potential attack found
• Cannot detect attacks unknown to developers of

rule sets
– No rules to cover them

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-30

Example: IDIOT

• Event is a single action, or a series of actions
resulting in a single record

• Five features of attacks:
– Existence: attack creates file or other entity
– Sequence: attack causes several events sequentially
– Partial order: attack causes 2 or more sequences of

events, and events form partial order under temporal
relation

– Duration: something exists for interval of time
– Interval: events occur exactly n units of time apart

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-31

IDIOT Representation

• Sequences of events may be interlaced
• Use colored Petri nets to capture this

– Each signature corresponds to a particular CPA
– Nodes are tokens; edges, transitions
– Final state of signature is compromised state

• Example: mkdir attack
– Edges protected by guards (expressions)
– Tokens move from node to node as guards satisfied

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-32

IDIOT Analysis

mknod

chown

unlink link

s1 s2 s3

s4

s5

s6
t1 t2

t4

t5

this[euid] != 0 && true_name(this[obj]) ==
true_name(“/etc/passwd”) &&
FILE2 = this[obj]

this[euid] == 0 && this[ruid] != 0 &&

this[euid] == 0 &&
this[ruid] != 0 &&

FILE1 = true_name(this[obj])

FILE1 == this[obj]
this[ruid] != 0 &&

FILE2 == this[obj]

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-33

IDIOT Features

• New signatures can be added dynamically
– Partially matched signatures need not be

cleared and rematched
• Ordering the CPAs allows you to order the

checking for attack signatures
– Useful when you want a priority ordering
– Can order initial branches of CPA to find

sequences known to occur often

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-34

Example: STAT

• Analyzes state transitions
– Need keep only data relevant to security
– Example: look at process gaining root

privileges; how did it get them?
• Example: attack giving setuid to root shell

ln target ./–s
–s

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-35

State Transition Diagram

• Now add postconditions for attack under the
appropriate state

S1 S2
link(f1, f2) exec(f1)

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-36

Final State Diagram

• Conditions met when system enters states s1 and s2; USER
is effective UID of process

• Note final postcondition is USER is no longer effective
UID; usually done with new EUID of 0 (root) but works
with any EUID

S1
S2

link(f1, f2) exec(f1)

not EUID = USERname(f1) = “-*”
not owner(f1) = USER
shell_script(f1)

permitted(XGROUP, f1) or permitted(XWORLD, f1)
permitted(SUID, f1)

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-37

USTAT

• USTAT is prototype STAT system
– Uses BSM to get system records
– Preprocessor gets events of interest, maps them

into USTAT’s internal representation
• Failed system calls ignored as they do not change

state

• Inference engine determines when
compromising transition occurs

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-38

How Inference Engine Works

• Constructs series of state table entries
corresponding to transitions

• Example: rule base has single rule above
– Initial table has 1 row, 2 columns (corresponding to s1

and s2)
– Transition moves system into s1
– Engine adds second row, with “X” in first column as in

state s1
– Transition moves system into s2
– Rule fires as in compromised transition

• Does not clear row until conditions of that state false

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-39

State Table

1
s2s1

X2now in s1

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-40

Example: NFR

• Built to make adding new rules easily
• Architecture:

– Packet sucker: read packets from network
– Decision engine: uses filters to extract

information
– Backend: write data generated by filters to disk

• Query backend allows administrators to extract
raw, postprocessed data from this file

• Query backend is separate from NFR process

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-41

N-Code Language

• Filters written in this language
• Example: ignore all traffic not intended for 2 web

servers:
list of my web servers
my_web_servers = [10.237.100.189 10.237.55.93] ;
we assume all HTTP traffic is on port 80
filter watch tcp (client, dport:80)
{

if (ip.dest != my_web_servers)
return;

now process the packet; we just write out packet info
record system.time, ip.src, ip.dest to www._list;

}
www_list = recorder(“log”)

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-42

Specification Modeling

• Determines whether execution of sequence
of instructions violates specification

• Only need to check programs that alter
protection state of system

• System traces, or sequences of events t1, …
ti, ti+1, …, are basis of this
– Event ti occurs at time C(ti)
– Events in a system trace are totally ordered

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-43

System Traces

• Notion of subtrace (subsequence of a trace)
allows you to handle threads of a process,
process of a system

• Notion of merge of traces U, V when trace
U and trace V merged into single trace

• Filter p maps trace T to subtrace T′ such
that, for all events ti ∈ T′, p(ti) is true

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-44

Examples

• Subject S composed of processes p, q, r, with
traces Tp, Tq, Tr has Ts = Tp⊕Tq⊕ Tr

• Filtering function: apply to system trace
– On process, program, host, user as 4-tuple

< ANY, emacs, ANY, bishop >
lists events with program “emacs”, user “bishop”

< ANY, ANY, nobhill, ANY >
list events on host “nobhill”

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-45

Example: Apply to rdist

• Ko, Levitt, Ruschitzka defined PE-grammar to
describe accepted behavior of program

• rdist creates temp file, copies contents into it,
changes protection mask, owner of it, copies it
into place
– Attack: during copy, delete temp file and place

symbolic link with same name as temp file
– rdist changes mode, ownership to that of program

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-46

Relevant Parts of Spec
7. SE: <rdist>
8. <rdist> -> <valid_op> <rdist> |.
9. <valid_op> -> open_r_worldread

…
| chown

{ if !(Created(F) and M.newownerid = U)
then violation(); fi; }

…
10. END

• Chown of symlink violates this rule as M.newownerid ≠
U (owner of file symlink points to is not owner of file
rdist is distributing)

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-47

Comparison and Contrast

• Misuse detection: if all policy rules known, easy
to construct rulesets to detect violations
– Usual case is that much of policy is unspecified, so

rulesets describe attacks, and are not complete
• Anomaly detection: detects unusual events, but

these are not necessarily security problems
• Specification-based vs. misuse: spec assumes if

specifications followed, policy not violated;
misuse assumes if policy as embodied in rulesets
followed, policy not violated

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-48

IDS Architecture

• Basically, a sophisticated audit system
– Agent like logger; it gathers data for analysis
– Director like analyzer; it analyzes data obtained from

the agents according to its internal rules
– Notifier obtains results from director, and takes some

action
• May simply notify security officer
• May reconfigure agents, director to alter collection, analysis

methods
• May activate response mechanism

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-49

Agents

• Obtains information and sends to director
• May put information into another form

– Preprocessing of records to extract relevant
parts

• May delete unneeded information
• Director may request agent send other

information

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-50

Example

• IDS uses failed login attempts in its analysis
• Agent scans login log every 5 minutes,

sends director for each new login attempt:
– Time of failed login
– Account name and entered password

• Director requests all records of login (failed
or not) for particular user
– Suspecting a brute-force cracking attempt

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-51

Host-Based Agent

• Obtain information from logs
– May use many logs as sources
– May be security-related or not
– May be virtual logs if agent is part of the kernel

• Very non-portable

• Agent generates its information
– Scans information needed by IDS, turns it into

equivalent of log record
– Typically, check policy; may be very complex

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-52

Network-Based Agents

• Detects network-oriented attacks
– Denial of service attack introduced by flooding a

network
• Monitor traffic for a large number of hosts
• Examine the contents of the traffic itself
• Agent must have same view of traffic as

destination
– TTL tricks, fragmentation may obscure this

• End-to-end encryption defeats content monitoring
– Not traffic analysis, though

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-53

Network Issues

• Network architecture dictates agent placement
– Ethernet or broadcast medium: one agent per subnet
– Point-to-point medium: one agent per connection, or

agent at distribution/routing point
• Focus is usually on intruders entering network

– If few entry points, place network agents behind them
– Does not help if inside attacks to be monitored

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-54

Aggregation of Information

• Agents produce information at multiple
layers of abstraction
– Application-monitoring agents provide one

view (usually one line) of an event
– System-monitoring agents provide a different

view (usually many lines) of an event
– Network-monitoring agents provide yet

another view (involving many network
packets) of an event

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-55

Director

• Reduces information from agents
– Eliminates unnecessary, redundant records

• Analyzes remaining information to determine if
attack under way
– Analysis engine can use a number of techniques,

discussed before, to do this
• Usually run on separate system

– Does not impact performance of monitored systems
– Rules, profiles not available to ordinary users

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-56

Example

• Jane logs in to perform system maintenance
during the day

• She logs in at night to write reports
• One night she begins recompiling the kernel
• Agent #1 reports logins and logouts
• Agent #2 reports commands executed

– Neither agent spots discrepancy
– Director correlates log, spots it at once

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-57

Adaptive Directors

• Modify profiles, rule sets to adapt their
analysis to changes in system
– Usually use machine learning or planning to

determine how to do this
• Example: use neural nets to analyze logs

– Network adapted to users’ behavior over time
– Used learning techniques to improve

classification of events as anomalous
• Reduced number of false alarms

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-58

Notifier

• Accepts information from director
• Takes appropriate action

– Notify system security officer
– Respond to attack

• Often GUIs
– Well-designed ones use visualization to

convey information

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-59

GrIDS GUI

A E

D

C

B

• GrIDS interface showing the progress of a worm
as it spreads through network

• Left is early in spread
• Right is later on

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-60

Other Examples

• Courtney detected SATAN attacks
– Added notification to system log
– Could be configured to send email or paging

message to system administrator
• IDIP protocol coordinates IDSes to respond

to attack
– If an IDS detects attack over a network,

notifies other IDSes on co-operative firewalls;
they can then reject messages from the source

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-61

Organization of an IDS

• Monitoring network traffic for intrusions
– NSM system

• Combining host and network monitoring
– DIDS

• Making the agents autonomous
– AAFID system

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-62

Monitoring Networks: NSM

• Develops profile of expected usage of network,
compares current usage

• Has 3-D matrix for data
– Axes are source, destination, service
– Each connection has unique connection ID
– Contents are number of packets sent over that

connection for a period of time, and sum of data
– NSM generates expected connection data
– Expected data masks data in matrix, and anything left

over is reported as an anomaly

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-63

Problem

• Too much data!
– Solution: arrange data

hierarchically into
groups

• Construct by folding
axes of matrix

– Analyst could expand
any group flagged as
anomalous(S1, D1, SMTP)

(S1, D1, FTP)
…

(S1, D1)

(S1, D2, SMTP)
(S1, D2, FTP)

…

(S1, D2)

S1

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-64

Signatures

• Analyst can write rule to look for specific
occurrences in matrix
– Repeated telnet connections lasting only as

long as set-up indicates failed login attempt
• Analyst can write rules to match against

network traffic
– Used to look for excessive logins, attempt to

communicate with non-existent host, single
host communicating with 15 or more hosts

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-65

Other

• Graphical interface independent of the NSM
matrix analyzer

• Detected many attacks
– But false positives too

• Still in use in some places
– Signatures have changed, of course

• Also demonstrated intrusion detection on network
is feasible
– Did no content analysis, so would work even with

encrypted connections

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-66

Combining Sources: DIDS

• Neither network-based nor host-based monitoring
sufficient to detect some attacks
– Attacker tries to telnet into system several times using

different account names: network-based IDS detects
this, but not host-based monitor

– Attacker tries to log into system using an account
without password: host-based IDS detects this, but not
network-based monitor

• DIDS uses agents on hosts being monitored, and
a network monitor
– DIDS director uses expert system to analyze data

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-67

Attackers Moving in Network

• Intruder breaks into system A as alice
• Intruder goes from A to system B, and breaks into

B’s account bob
• Host-based mechanisms cannot correlate these
• DIDS director could see bob logged in over

alice’s connection; expert system infers they are
the same user
– Assigns network identification number NID to this user

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-68

Handling Distributed Data

• Agent analyzes logs to extract entries of
interest
– Agent uses signatures to look for attacks

• Summaries sent to director
– Other events forwarded directly to director

• DIDS model has agents report:
– Events (information in log entries)
– Action, domain

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-69

Actions and Domains

• Subjects perform actions
– session_start, session_end, read, write, execute,

terminate, create, delete, move, change_rights,
change_user_id

• Domains characterize objects
– tagged, authentication, audit, network, system,

sys_info, user_info, utility, owned, not_owned
– Objects put into highest domain to which it belongs

• Tagged, authenticated file is in domain tagged
• Unowned network object is in domain network

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-70

More on Agent Actions

• Entities can be subjects in one view, objects in
another
– Process: subject when changes protection mode of

object, object when process is terminated
• Table determines which events sent to DIDS director

– Based on actions, domains associated with event
– All NIDS events sent over so director can track view

of system
• Action is session_start or execute; domain is network

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-71

Layers of Expert System Model

1. Log records
2. Events (relevant information from log entries)
3. Subject capturing all events associated with a

user; NID assigned to this subject
4. Contextual information such as time, proximity to

other events
– Sequence of commands to show who is using the

system
– Series of failed logins follow

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-72

Top Layers

5. Network threats (combination of events in
context)
– Abuse (change to protection state)
– Misuse (violates policy, does not change state)
– Suspicious act (does not violate policy, but of interest)

6. Score (represents security state of network)
– Derived from previous layer and from scores

associated with rules
• Analyst can adjust these scores as needed

– A convenience for user

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-73

Autonomous Agents: AAFID

• Distribute director among agents
• Autonomous agent is process that can act

independently of the system of which it is part
• Autonomous agent performs one particular

monitoring function
– Has its own internal model
– Communicates with other agents
– Agents jointly decide if these constitute a reportable

intrusion

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-74

Advantages

• No single point of failure
– All agents can act as director
– In effect, director distributed over all agents

• Compromise of one agent does not affect others
• Agent monitors one resource

– Small and simple
• Agents can migrate if needed
• Approach appears to be scalable to large networks

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-75

Disadvantages

• Communications overhead higher, more
scattered than for single director
– Securing these can be very hard and expensive

• As agent monitors one resource, need many
agents to monitor multiple resources

• Distributed computation involved in
detecting intrusions
– This computation also must be secured

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-76

Example: AAFID

• Host has set of agents and transceiver
– Transceiver controls agent execution, collates

information, forwards it to monitor (on local or remote
system)

• Filters provide access to monitored resources
– Use this approach to avoid duplication of work and

system dependence
– Agents subscribe to filters by specifying records needed
– Multiple agents may subscribe to single filter

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-77

Transceivers and Monitors

• Transceivers collect data from agents
– Forward it to other agents or monitors
– Can terminate, start agents on local system

• Example: System begins to accept TCP connections, so
transceiver turns on agent to monitor SMTP

• Monitors accept data from transceivers
– Can communicate with transceivers, other monitors

• Send commands to transceiver
– Perform high level correlation for multiple hosts
– If multiple monitors interact with transceiver, AAFID

must ensure transceiver receives consistent commands

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-78

Other

• User interface interacts with monitors
– Could be graphical or textual

• Prototype implemented in PERL for Linux
and Solaris
– Proof of concept
– Performance loss acceptable

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-79

Incident Prevention

• Identify attack before it completes
• Prevent it from completing
• Jails useful for this

– Attacker placed in a confined environment that looks
like a full, unrestricted environment

– Attacker may download files, but gets bogus ones
– Can imitate a slow system, or an unreliable one
– Useful to figure out what attacker wants
– MLS systems provide natural jails

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-80

IDS-Based Method

• Based on IDS that monitored system calls
• IDS records anomalous system calls in locality

frame buffer
– When number of calls in buffer exceeded user-defined

threshold, system delayed evaluation of system calls
– If second threshold exceeded, process cannot spawn

child
• Performance impact should be minimal on

legitimate programs
– System calls small part of runtime of most programs

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-81

Implementation

• Implemented in kernel of Linux system
• Test #1: ssh daemon

– Detected attempt to use global password installed as
back door in daemon

– Connection slowed down significantly
– When second threshold set to 1, attacker could not

obtain login shell
• Test #2: sendmail daemon

– Detected attempts to break in
– Delays grew quickly to 2 hours per system call

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-82

Intrusion Handling

• Restoring system to satisfy site security policy
• Six phases

– Preparation for attack (before attack detected)
– Identification of attack
 Containment of attack (confinement)
 Eradication of attack (stop attack)
– Recovery from attack (restore system to secure state)
 Follow-up to attack (analysis and other actions)

 Discussed in what follows

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-83

Containment Phase

• Goal: limit access of attacker to system
resources

• Two methods
– Passive monitoring
– Constraining access

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-84

Passive Monitoring

• Records attacker’s actions; does not interfere with
attack
– Idea is to find out what the attacker is after and/or

methods the attacker is using
• Problem: attacked system is vulnerable throughout

– Attacker can also attack other systems
• Example: type of operating system can be derived

from settings of TCP and IP packets of incoming
connections
– Analyst draws conclusions about source of attack

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-85

Constraining Actions

• Reduce protection domain of attacker
• Problem: if defenders do not know what

attacker is after, reduced protection domain
may contain what the attacker is after
– Stoll created document that attacker

downloaded
– Download took several hours, during which

the phone call was traced to Germany

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-86

Deception

• Deception Tool Kit
– Creates false network interface
– Can present any network configuration to attackers
– When probed, can return wide range of vulnerabilities
– Attacker wastes time attacking non-existent systems

while analyst collects and analyzes attacks to
determine goals and abilities of attacker

– Experiments show deception is effective response to
keep attackers from targeting real systems

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-87

Eradication Phase

• Usual approach: deny or remove access to
system, or terminate processes involved in attack

• Use wrappers to implement access control
– Example: wrap system calls

• On invocation, wrapper takes control of process
• Wrapper can log call, deny access, do intrusion detection
• Experiments focusing on intrusion detection used multiple

wrappers to terminate suspicious processes
– Example: network connections

• Wrapper around servers log, do access control on, incoming
connections and control access to Web-based databases

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-88

Firewalls

• Mediate access to organization’s network
– Also mediate access out to the Internet

• Example: Java applets filtered at firewall
– Use proxy server to rewrite them

• Change “<applet>” to something else
– Discard incoming web files with hex sequence CA FE

BA BE
• All Java class files begin with this

– Block all files with name ending in “.class” or “.zip”
• Lots of false positives

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-89

Intrusion Detection and Isolation
Protocol

• Coordinates reponse to attacks
• Boundary controller is system that can

block connection from entering perimeter
– Typically firewalls or routers

• Neighbor is system directly connected
• IDIP domain is set of systems that can send

messages to one another without messages
passing through boundary controller

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-90

Protocol

• IDIP protocol engine monitors connection
passing through members of IDIP domains
– If intrusion observed, engine reports it to neighbors
– Neighbors propagate information about attack
– Trace connection, datagrams to boundary controllers
– Boundary controllers coordinate responses

• Usually, block attack, notify other controllers to block
relevant communications

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-91

Example

• C, D, W, X, Y, Z boundary controllers
• f launches flooding attack on A
• Note after X xuppresses traffic intended for A, W begins

accepting it and A, b, a, and W can freely communicate
again

C D

X
W

b

a

A
eY

Z

f

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-92

Follow-Up Phase

• Take action external to system against
attacker
– Thumbprinting: traceback at the connection

level
– IP header marking: traceback at the packet level
– Counterattacking

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-93

Thumbprinting

• Compares contents of connections to determine
which are in a chain of connections

• Characteristic of a good thumbprint
1. Takes as little space as possible
2. Low probability of collisions (connections with

different contents having same thumbprint)
3. Minimally affected by common transmission errors
4. Additive, so two thumbprints over successive intervals

can be combined
5. Cost little to compute, compare

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-94

Example: Foxhound

• Thumbprints are linear combinations of
character frequencies
– Experiment used telnet, rlogin connections

• Computed over normal network traffic
• Control experiment

– Out of 4000 pairings, 1 match reported
• So thumbprints unlikely to match if connections

paired randomly
• Matched pair had identical contents

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-95

Experiments

• Compute thumbprints from connections passing
through multiple hosts
– One thumbprint per host

• Injected into a collection of thumbprints made at
same time
– Comparison immediately identified the related ones

• Then experimented on long haul networks
– Comparison procedure readily found connections

correctly

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-96

IP Header Marking

• Router places data into each header indicating
path taken

• When do you mark it?
– Deterministic: always marked
– Probabilistic: marked with some probability

• How do you mark it?
– Internal: marking placed in existing header
– Expansive: header expanded to include extra space for

marking

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-97

Example 1

• Expand header to have n slots for router
addresses

• Router address placed in slot s with
probability sp

• Use: suppose SYN flood occurs in network

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-98

Use

• E SYN flooded; 3150 packets could be result of flood
• 600 (A, B, D); 200 (A, D); 150 (B, D); 1500 (D); 400 (A,

C); 300 (C)
– A: 1200; B: 750; C: 700; D: 2450

• Note traffic increases between B and D
– B probable culprit

A

B

C

D

E

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-99

Algebraic Technique

• Packets from A to B along path P
– First router labels jth packet with xj

– Routers on P have IP addresses a0, …, an

– Each router ai computes Rxj + ai, where R is
current mark a0xj

i + … + ai–1 (Horner’s rule)
• At B, marking is a0xn + … + an, evaluated at xj

– After n+1 packets arrive, can determine route

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-100

Alternative

• Alternate approach: at most l routers mark
packet this way
– l set by first router
– Marking routers decrement it
– Experiment analyzed 20,000 packets marked

by this scheme; recovered paths of length 25
about 98% of time

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-101

Problem

• Who assigns xj?
– Infeasible for a router to know it is first on path
– Can use weighting scheme to determine if router is first

• Attacker can place arbitrary information into
marking
– If router does not select packet for marking, bogus

information passed on
– Destination cannot tell if packet has had bogus

information put in it

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-102

Counterattacking

• Use legal procedures
– Collect chain of evidence so legal authorities

can establish attack was real
– Check with lawyers for this

• Rules of evidence very specific and detailed
• If you don’t follow them, expect case to be dropped

• Technical attack
– Goal is to damage attacker seriously enough to

stop current attack and deter future attacks

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-103

Consequences

1. May harm innocent party
• Attacker may have broken into source of attack or may

be impersonating innocent party
2. May have side effects

• If counterattack is flooding, may block legitimate use
of network

3. Antithetical to shared use of network
• Counterattack absorbs network resources and makes

threats more immediate
4. May be legally actionable

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-104

Example: Counterworm

• Counterworm given signature of real worm
– Counterworm spreads rapidly, deleting all occurrences

of original worm
• Some issues

– How can counterworm be set up to delete only targeted
worm?

– What if infected system is gathering worms for
research?

– How do originators of counterworm know it will not
cause problems for any system?

• And are they legally liable if it does?

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #25-105

Key Points

• Intrusion detection is a form of auditing
• Anomaly detection looks for unexpected events
• Misuse detection looks for what is known to be

bad
• Specification-based detection looks for what is

known not to be good
• Intrusion response requires careful thought and

planning

