Chapter 32: Entropy and
Uncertainty

e Conditional, joint probability
* Entropy and uncertainty

e Joint entropy

e Conditional entropy

* Perfect secrecy
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Overview

e Random variables

e Joint probability

e Conditional probability

* Entropy (or uncertainty in bits)

e Joint entropy

e Conditional entropy

* Applying it to secrecy of ciphers
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Random Variable

* Variable that represents outcome of an event

— X represents value from roll of a fair die; probability
for rolling n: p(X =n) = 1/6

— If die 1s loaded so 2 appears twice as often as other
numbers, p(X =2)=2/7 and, forn #2, p(X =n) = 1/7
* Note: p(X) means specific value for X doesn’t
matter

— Example: all values of X are equiprobable
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Joint Probability

e Joint probability of X and Y, p(X, Y), 1s
probability that X and Y simultaneously
assume particular values

— If X, Y independent, p(X, Y) = p(X)p(Y)
e Roll die, toss coin

— p(X =3, Y=heads) = p(X =3)p(Y = heads) =
1/6 x 1/2 =1/12
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Two Dependent Events

e X =roll of red die, Y = sum of red, blue die

rolls
p(Y=2)=1/36  p(Y=3)=2/36 p(Y=4)=3/36 p(Y=5)=4/36

p(Y=6)=5/36 p(Y=7)=6/36 p(¥Y=8)=5/36 p(Y=9)=4/36
p(Y=10) =3/36 p(Y=11)=2/36 p(¥Y=12)=1/36

 Formula:
_p(X=1, Y=11) = p(X=1)p(Y=11) = (1/6)(2/36) =
1/108
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Conditional Probability

e Conditional probability of X given Y,
p(X1Y), 1s probability that X takes on a
particular value given Y has a particular
value

e Continuing example ...
_ p(Y=TIX=1) = 1/6
_ p(Y=71X=3) = 1/6
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Relationship

* pX, Y) =pX 1Y) p(Y) =p(X) p(Y | X)

 Example:

— p(X=3,Y =8) = p(X=31Y =8) p(Y =8) =
(1/5)(5/36) = 1/36

e Note: if X, Y independent:
- pXIY) = p(X)
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Entropy

* Uncertainty of a value, as measured 1n bits

 Example: X value of fair coin toss; X could
be heads or tails, so 1 bit of uncertainty

— Theretore entropy of X 1s H(X) =1

e Formal definition: random variable X,
values x, ..., x ; S0 2. p(X =x,) =1

H(X) =-2, p(X =x;) Ig p(X = x;)
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Heads or Tails?

e H(X)= - p(X=heads) lg p(X=heads)

— p(X=tails) 1g p(X=tails)
—(172) 1g (1/2) — (1/2) 1g (1/2)
-(12) 1) -(172)(-1)=1

e Confirms previous intuitive result
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n-Sided Fair Die

H(X) =2, p(X =x;) 1g p(X = x;)

As p(X = x;) = 1/n, this becomes
H(X)=-2.(1/n) 1g (1/ n) = -n(1/n) (-lg n)
SO

HX)=l1gn

which 1s the number of bits 1n 7, as expected
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Ann, Pam, and Paul

Ann, Pam twice as likely to win as Paul

W represents the winner. What 1s its entropy?
— w; = Ann, w, = Pam, w; = Paul
— p(W=w,) = p(W=w,) =2/5, p(W=w;) = 1/5

* So H(W) =-2, p(W=w, Ig p(W=w)
=—(2/5)1g (2/5) — (2/5) 1g (2/5) — (1/5) 1g (1/5)
=—(4/5)+1g5=-1.52

e If all equally likely to win, H(W) =1g 3 = 1.58

June 1, 2004 Computer Security: Art and Science Slide #32-11
©2002-2004 Matt Bishop



Joint Entropy

e X takes values from { x,, ..., x, }

— 2 p(X=x,) =1
e Ytakes values from {y, ...,y }
-2, p(Y=y) =1

e Joint entropy of X, Y 1s:
- HX,Y) = —Zj 2. p(X=x,, Y=yj) lg p(X=x, Y=yj)
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Example

X: roll of tair die, Y: flip of coin
p(X=1, Y=heads) = p(X=1) p(Y=heads) = 1/12
— As X and Y are independent
H(X, Y) =-2; 2, p(X=x,; Y=y) Ig p(X=x;, Y=y,
=2[6[(1/12)1g (1/12) ] | =1g 12
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Conditional Entropy

e X takes values from { x,, ..., x, }

— Zi p(X:xl.) =1
e Ytakes values from { y,, ...,y }
- 2, p(Y=y) =1

* Conditional entropy of X given Y=y; is:
- H(X | Y=y, = -2, p(X=x; | Y=y)) Ig p(X=x; | Y=y))
* Conditional entropy of X given Y 1s:
- HX 1Y) =-2,p(Y=y) 2, p(X=x; | Y=y)) 1g p(X=x; | Y=y,)
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Example

e X roll of red die, Y sum of red, blue roll

e Note p(X=11Y=2) =1, p(X=ilY=2) =0 fori # 1
— If the sum of the rolls 1s 2, both dice were 1

e HXIY=2)=-2 p(X=x]1Y=2) 1g p(X=x]1Y=2) =0

 Note p(X=1,Y=7)=1/6

— If the sum of the rolls 1s 7, the red die can be any of 1,
..., 6 and the blue die must be 7-roll of red die

e HXIY=T)=-2 p(X=x]IY=T) 1g p(X=x,Y=T)
=—6(1/6)1g (1/6) =1g 6
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Perfect Secrecy

e Cryptography: knowing the ciphertext does
not decrease the uncertainty of the plaintext

* M={m,,...,m, } set of messages
e C={cy,..., c, }setof messages

* Cipher ¢, = E(m,) achieves perfect secrecy
it HM | C)=H(M)

June 1, 2004 Computer Security: Art and Science Slide #32-16
©2002-2004 Matt Bishop



