
i
i

“Bishop_Ch01” — 2018/10/11 — 18:02 — page 3 — #3

i
i

i
i

i
i

Chapter 1
An Overview of Computer
Security

ANTONIO: Whereof what’s past is prologue, what to come
In yours and my discharge.

— The Tempest, II, i, 257–258.

This chapter presents the basic concepts of computer security. The remainder of
this book will elaborate on these concepts in order to reveal the logic underlying
the principles of these concepts.

We begin with basic security-related services that protect against threats
to the security of the system. The next section discusses security policies that
identify the threats and de�ne the requirements for ensuring a secure system.
Security mechanisms detect and prevent attacks and recover from those that
succeed. Analyzing the security of a system requires an understanding of the
mechanisms that enforce the security policy. It also requires a knowledge of the
related assumptions and trust, which leads to the threats and the degree to which
they may be realized. Such knowledge allows one to design better mechanisms
and policies to neutralize these threats. This process leads to risk analysis. Human
beings are the weakest link in the security mechanisms of any system. Therefore,
policies and procedures must take people into account. This chapter discusses
each of these topics.

1.1 The Basic Components

Computer security rests on con�dentiality, integrity, and availability. The inter-
pretations of these three aspects vary, as do the contexts in which they arise. The
interpretation of an aspect in a given environment is dictated by the needs of the
individuals, customs, and laws of the particular organization.

3Excerpt from Computer Security, 2/E, by Matthew Bishop (ISBN: 9780321712332). Copyright © 2019 Pearson Education, Inc.
Reproduction of any sort without permission from the publisher is strictly prohibited.

i
i

“Bishop_Ch01” — 2018/10/11 — 18:02 — page 4 — #4

i
i

i
i

i
i

4 Chapter 1 An Overview of Computer Security

1.1.1 Confidentiality

Con�dentiality is the concealment of information or resources. The need for
keeping information secret arises from the use of computers in institutions with
sensitive information such as government and industry. For example, military
and civilian institutions in the government often restrict access to information
to those who need that information. The �rst formal work in computer security
was motivated by the military’s attempt to implement controls to enforce a “need
to know” principle. This principle also applies to industrial �rms, which keep their
proprietary designs secure lest their competitors try to steal the designs. As a
further example, all types of institutions keep some types of personnel records
secret.

Access control mechanisms support con�dentiality. One access control
mechanism for preserving con�dentiality is cryptography, which transforms data
to make it incomprehensible. A cryptographic key controls access to the untrans-
formed data, but then the cryptographic key itself becomes another datum to be
protected.

EXAMPLE: Enciphering an income tax return will prevent anyone without the key
from reading the taxable income on the return. If the owner needs to see the
return, it must be deciphered. Only the possessor of the cryptographic key can
enter it into a deciphering program. However, if someone else can read the key
when it is entered into the program and has access to the enciphered return, the
con�dentiality of the tax return has been compromised.

Other system-dependent mechanisms can prevent information from being
illicitly accessed. Data protected only by these controls can be read when the
controls fail or are bypassed. Then the controls’ advantage is offset by a corre-
sponding disadvantage. They can protect the secrecy of data more completely
than cryptography, but if they fail or are evaded, the data becomes visible.

Con�dentiality also applies to the existence of data, which is sometimes
more revealing than the data itself. The precise number of people who distrust
a politician may be less important than knowing that such a poll was taken by
the politician’s staff. How a particular government agency harassed citizens in
its country may be less important than knowing that such harassment occurred.
Access control mechanisms sometimes conceal the mere existence of data, lest the
existence itself reveal information that should be protected.

Resource hiding is another important aspect of con�dentiality. Organiza-
tions often wish to conceal their network con�guration as well as what systems
they are using. They may not wish others to know about speci�c equipment
(because it could be used without authorization or in inappropriate ways), and
a company renting time from a service provider may not want others to know
what resources it is using. Access control mechanisms provide these capabilities
as well.

All the mechanisms that enforce con�dentiality require supporting services
from the system. The assumption is that the security services can rely on the kernel,

Excerpt from Computer Security, 2/E, by Matthew Bishop (ISBN: 9780321712332). Copyright © 2019 Pearson Education, Inc.
Reproduction of any sort without permission from the publisher is strictly prohibited.

i
i

“Bishop_Ch01” — 2018/10/11 — 18:02 — page 5 — #5

i
i

i
i

i
i

1.1 The Basic Components 5

and other agents, to supply correct data. Thus, assumptions and trust underlie
con�dentiality mechanisms.

1.1.2 Integrity

Integrity refers to the trustworthiness of data or resources, and it is usually
phrased in terms of preventing improper or unauthorized change. Integrity
includes data integrity (the content of the information) and origin integrity (the
source of the data, often called authentication). The source of the information
may bear on its accuracy and credibility and on the trust that people place in the
information.This dichotomy illustrates the principle that the aspect of integrity
known as credibility is central to the proper functioning of a system. We will
return to this issue when discussing malicious logic.

EXAMPLE: A newspaper may print information obtained from a leak at the White
House but attribute it to the wrong source. The information is printed as received
(preserving data integrity), but its source is incorrect (corrupting origin integrity).

Integrity mechanisms fall into two classes: prevention mechanisms and
detection mechanisms.

Prevention mechanisms seek to maintain the integrity of the data by block-
ing any unauthorized attempts to change the data or any attempts to change the
data in unauthorized ways. The distinction between these two types of attempts
is important. The former occurs when a user tries to change data that she has no
authority to change. The latter occurs when a user authorized to make certain
changes in the data tries to change the data in other ways. For example, suppose
an accounting system is on a computer. Someone breaks into the system and tries
to modify the accounting data. Here an unauthorized user has tried to violate the
integrity of the accounting database. But if an accountant hired by the �rm to
maintain its books tries to embezzle money by sending it overseas and hiding the
transactions, a user (the accountant) has tried to change data (the accounting
data) in unauthorized ways (by not entering the transfer of funds to a Swiss
bank account). Adequate authentication and access controls will generally stop
the break-in from the outside, but preventing the second type of attempt requires
very different controls.

Detection mechanisms do not try to prevent violations of integrity; they
simply report that the data’s integrity is no longer trustworthy. Detection mech-
anisms may analyze system events (user or system actions) to detect problems
or (more commonly) may analyze the data itself to see if required or expected
constraints still hold. The mechanisms may report the actual cause of the integrity
violation (a speci�c part of a �le was altered), or they may simply report that the
�le is now corrupt.

Working with integrity is very different than working with con�dentiality.
With con�dentiality, the data is either compromised or it is not, but integrity
includes both the correctness and the trustworthiness of the data. The origin of
the data (how and from whom it was obtained), how well the data was protected

Excerpt from Computer Security, 2/E, by Matthew Bishop (ISBN: 9780321712332). Copyright © 2019 Pearson Education, Inc.
Reproduction of any sort without permission from the publisher is strictly prohibited.

i
i

“Bishop_Ch01” — 2018/10/11 — 18:02 — page 6 — #6

i
i

i
i

i
i

6 Chapter 1 An Overview of Computer Security

before it arrived at the current machine, and how well the data is protected on
the current machine all affect the integrity of the data. Thus, evaluating integrity
is often very dif�cult, because it relies on assumptions about the source of the
data and about trust in that source—two underpinnings of security that are often
overlooked.

1.1.3 Availability

Availability refers to the ability to use information or resources. Availability is an
important aspect of reliability as well as of system design because an unavailable
system is at least as bad as no system at all. The aspect of availability that is
relevant to security is that someone may deliberately arrange to deny access to
data or to a service by making it unavailable or unusable. System designs usually
assume a statistical model to analyze expected patterns of use, and mechanisms
ensure availability when that statistical model holds. Someone may be able to
manipulate use (or parameters that control use, such as network traf�c) so that
the assumptions of the statistical model are no longer valid. This means that
the mechanisms for keeping the resource or data available are working in an
environment for which they were not designed. As a result, they will often fail.

EXAMPLE: Suppose Anne has compromised a bank’s secondary system server,
which supplies bank account balances. When anyone else asks that server for
information, Anne can supply any information she desires. Merchants validate
checks by contacting the bank’s primary balance server. If a merchant gets no
response, the secondary server will be asked to supply the data. Anne’s colleague
prevents merchants from contacting the primary balance server, so all merchant
queries go to the secondary server. Anne will never have a check turned down,
regardless of her actual account balance. Notice that if the bank had only one
server (the primary one) and that server were unavailable, this scheme would not
work. The merchant would be unable to validate the check.

Attempts to block availability, called denial of service (DoS) attacks, can
be the most dif�cult to detect, because the analyst must determine if the unusual
access patterns are attributable to deliberate manipulation of resources or of
environment. Complicating this determination is the nature of statistical models.
Even if the model accurately describes the environment, atypical events simply
contribute to the nature of the statistics. A deliberate attempt to make a resource
unavailable may look like, or be, an atypical event. In some environments, it may
not even appear atypical.

1.2 Threats

A threat is a potential violation of security. The violation need not actually occur
for there to be a threat. The fact that the violation might occur means that thoseExcerpt from Computer Security, 2/E, by Matthew Bishop (ISBN: 9780321712332). Copyright © 2019 Pearson Education, Inc.

Reproduction of any sort without permission from the publisher is strictly prohibited.

i
i

“Bishop_Ch01” — 2018/10/11 — 18:02 — page 7 — #7

i
i

i
i

i
i

1.2 Threats 7

actions that could cause it to occur must be guarded against (or prepared for).
Those actions are called attacks. Those who execute such actions, or cause them
to be executed, are called attackers.

The three security services—con�dentiality, integrity, and availability—
counter threats to the security of a system. Shirey [1739] divides threats into
four broad classes: disclosure, or unauthorized access to information; deception,
or acceptance of false data; disruption, or interruption or prevention of correct
operation; and usurpation, or unauthorized control of some part of a system.
These four broad classes encompass many common threats. Because the threats
are ubiquitous, an introductory discussion of each one will present issues that
recur throughout the study of computer security.

Snooping or eavesdropping, the unauthorized interception of information,
is a form of disclosure. It is passive, suggesting simply that some entity is listening
to (or reading) communications or browsing through �les or system information.
Passive wiretapping is a form of snooping in which a network is monitored. (It is
called “wiretapping” because of the “wires” that compose the network, although
the term is used even if no physical wiring is involved.) Con�dentiality services
seek to counter this threat.

Modi�cation or alteration, an unauthorized change of information, covers
three classes of threats. The goal may be deception, in which some entity relies
on the modi�ed data to determine which action to take, or in which incorrect
information is accepted as correct and is released. If the modi�ed data controls
the operation of the system, the threats of disruption and usurpation arise. Unlike
snooping, modi�cation is active; it results from an entity changing information.
Active wiretapping is a form of modi�cation in which data moving across a
network is altered, new data is injected, or parts of the data are deleted; the term
“active” distinguishes it from snooping (“passive” wiretapping). An example is the
man-in-the-middle attack, in which an intruder reads messages from the sender and
sends (possibly modi�ed) versions to the recipient, in hopes that the recipient and
sender will not realize the presence of the intermediary. Integrity services seek to
counter this threat.

Masquerading or spoo�ng, an impersonation of one entity by another, is
a form of both deception and usurpation. It lures a victim into believing that
the entity with which it is communicating is a different entity. For example, if a
user tries to log into a computer across the Internet but instead reaches another
computer that claims to be the desired one, the user has been spoofed. Similarly,
if a user tries to read a web page, but an attacker has arranged for the user to
be given a different page, another spoof has taken place. This may be a passive
attack (in which the user simply accesses the web page), but it is usually an active
attack (in which the attacker issues responses dynamically to mislead the user
about the web page). Although masquerading is primarily deception, it is often
used to usurp control of a system by an attacker impersonating an authorized
manager or controller. Integrity services (called “authentication services” in this
context) seek to counter this threat.

Some forms of masquerading may be allowed. Delegation occurs when one
entity authorizes a second entity to perform functions on its behalf. The distinc-
tions between delegation and masquerading are important. If Susan delegates toExcerpt from Computer Security, 2/E, by Matthew Bishop (ISBN: 9780321712332). Copyright © 2019 Pearson Education, Inc.

Reproduction of any sort without permission from the publisher is strictly prohibited.

i
i

“Bishop_Ch01” — 2018/10/11 — 18:02 — page 8 — #8

i
i

i
i

i
i

8 Chapter 1 An Overview of Computer Security

Thomas the authority to act on her behalf, she is giving permission for him to
perform speci�c actions as though she were performing them herself. All parties
are aware of the delegation. Thomas will not pretend to be Susan; rather, he will
say, “I am Thomas and I have authority to do this on Susan’s behalf.” If asked,
Susan will verify this. On the other hand, in a masquerade, Thomas will pretend to
be Susan. No other parties (including Susan) will be aware of the masquerade, and
Thomas will say, “I am Susan.” Should anyone discover that he or she is dealing
with Thomas and ask Susan about it, she will deny that she authorized Thomas to
act on her behalf. Even though masquerading is a violation of security, delegation
is not.

Repudiation of origin, a false denial that an entity sent (or created) some-
thing, is a form of deception. For example, suppose a customer sends a letter to a
vendor agreeing to pay a large amount of money for a product. The vendor ships
the product and then demands payment. The customer denies having ordered the
product and, according to a law in the customer’s state, is therefore entitled to
keep the unsolicited shipment without payment. The customer has repudiated
the origin of the letter. If the vendor cannot prove that the letter came from the
customer, the attack succeeds. A variant of this is denial by a user that he created
speci�c information or entities such as �les. Integrity mechanisms try to cope with
this threat.

Denial of receipt, a false denial that an entity received some information
or message, is a form of deception. Suppose a customer orders an expensive
product, but the vendor demands payment before shipment. The customer pays,
and the vendor ships the product. The customer then asks the vendor when he will
receive the product. If the customer has already received the product, the question
constitutes a denial of receipt attack. The vendor can defend against this attack
only by proving that the customer did, despite his denials, receive the product.
Integrity and availability mechanisms attempt to guard against these attacks.

Delay, a temporary inhibition of a service, is a form of usurpation, although
it can play a supporting role in deception. Typically, delivery of a message or service
requires some time t; if an attacker can force the delivery to take more than time
t, the attacker has successfully delayed delivery. This requires manipulation of
system control structures, such as network components or server components, and
hence is a form of usurpation. If an entity is waiting for an authorization message
that is delayed, it may query a secondary server for the authorization. Even though
the attacker may be unable to masquerade as the primary server, she might be
able to masquerade as that secondary server and supply incorrect information.
Availability mechanisms can often thwart this threat.

Denial of service, a long-term inhibition of service, is a form of usurpation,
although it is often used with other mechanisms to deceive. The attacker prevents a
server from providing a service. The denial may occur at the source (by preventing
the server from obtaining the resources needed to perform its function), at the
destination (by blocking the communications from the server), or along the
intermediate path (by discarding messages from either the client or the server,
or both). Denial of service poses the same threat as an in�nite delay. Availability
mechanisms seek to counter this threat.

Excerpt from Computer Security, 2/E, by Matthew Bishop (ISBN: 9780321712332). Copyright © 2019 Pearson Education, Inc.
Reproduction of any sort without permission from the publisher is strictly prohibited.

i
i

“Bishop_Ch01” — 2018/10/11 — 18:02 — page 9 — #9

i
i

i
i

i
i

1.3 Policy and Mechanism 9

Denial of service or delay may result from direct attacks or from problems
unrelated to security. From our point of view, the cause and result are important;
the intention underlying them is not. If delay or denial of service compromises
system security, or is part of a sequence of events leading to the compromise
of a system, then we view it as an attempt to breach system security. But the
attempt may not be deliberate; indeed, it may be a user error, or the product of
environmental characteristics, rather than speci�c actions of an attacker.

1.3 Policy and Mechanism

Critical to our study of security is the distinction between policy and mechanism:

De�nition 1–1. A security policy is a statement of what is, and what is not,
allowed.

De�nition 1–2. A security mechanism is a method, tool, or procedure for
enforcing a security policy.

Mechanisms can be nontechnical, such as requiring proof of identity before
changing a password; in fact, policies often require some procedural mechanisms
that technology cannot enforce.

As an example, suppose a university’s computer science laboratory has a
policy that prohibits any student from copying another student’s homework �les.
The computer system provides mechanisms for preventing others from reading a
user’s �les. Anna fails to use these mechanisms to protect her homework �les, and
Bill copies them. A breach of security has occurred, because Bill has violated the
security policy. Anna’s failure to protect her �les does not authorize Bill to copy
them.

In this example, Anna could easily have protected her �les. In other environ-
ments, such protection may not be easy. For example, the Internet provides only
the most rudimentary security mechanisms, which are not adequate to protect
information sent over that network. Nevertheless, acts such as the recording
of passwords and other sensitive information violate an implicit security policy
of most sites (speci�cally, that passwords are a user’s con�dential property and
cannot be recorded by anyone).

Policies may be presented mathematically, as a list of allowed (secure) and
disallowed (nonsecure) states. For our purposes, we will assume that any given
policy provides an axiomatic description of secure states and nonsecure states. In
practice, policies are rarely so precise; they normally describe in English, or some
other natural language, what users and staff are allowed to do. The ambiguity
inherent in such a description leads to states that are not classi�ed as “allowed”
or “disallowed.” For example, consider the homework policy discussed previously.
If someone looks through another user’s directory without copying homework

Excerpt from Computer Security, 2/E, by Matthew Bishop (ISBN: 9780321712332). Copyright © 2019 Pearson Education, Inc.
Reproduction of any sort without permission from the publisher is strictly prohibited.

i
i

“Bishop_Ch01” — 2018/10/11 — 18:02 — page 10 — #10

i
i

i
i

i
i

10 Chapter 1 An Overview of Computer Security

�les, is that a violation of security? The answer depends on site custom, rules,
regulations, and laws, all of which are outside our focus and may change over
time.

When two different sites communicate or cooperate, the entity they com-
pose has a security policy based on the security policies of the two entities. If those
policies are inconsistent, either or both sites must decide what the security policy
for the combined site should be. The inconsistency often manifests itself as a
security breach. For example, if proprietary documents were given to a university,
the policy of con�dentiality in the corporation would con�ict with the more open
policies of most universities. The university and the company must develop a
mutual security policy that meets both their needs in order to produce a consistent
policy. When the two sites communicate through an independent third party, such
as an Internet service provider, the complexity of the situation grows rapidly.

1.3.1 Goals of Security

Given a security policy’s speci�cation of “secure” and “nonsecure” actions,
security mechanisms can prevent the attack, detect the attack, or recover from
the attack. The strategies may be used together or separately.

Prevention means that an attack will fail. For example, if one attempts to
break into a host over the Internet and that host is not connected to the Internet,
the attack has been prevented. Typically, prevention involves implementation
of mechanisms that restrict users to speci�c actions and that are trusted to be
implemented in a correct, unalterable way, so that an attacker cannot defeat the
mechanism by changing it. Preventative mechanisms often are very cumbersome
and interfere with system use to the point that they hinder normal use of the
system. But some simple preventative mechanisms, such as passwords (which aim
to prevent unauthorized users from accessing the system), have become widely
accepted. Prevention mechanisms can prevent compromise of parts of the system;
once in place, the resource protected by the mechanism need not be monitored for
security problems, at least in theory.

Detection indicates the effectiveness of preventative measures, and is espe-
cially useful when an attack cannot be prevented. Detection mechanisms accept
that an attack will occur; the goal is to determine that an attack is under way, or
has occurred, and report it. The attack may be monitored, however, to provide
data about its nature, severity, and results. Typical detection mechanisms monitor
various aspects of the system, looking for actions or information indicating an
attack. A good example of such a mechanism is one that gives a warning when a
user enters an incorrect password three times. The login may continue, but an
error message in a system log reports the unusually high number of mistyped
passwords. Detection mechanisms do not prevent compromise of parts of the
system, which is a serious drawback. The resource protected by the detection
mechanism is continuously or periodically monitored for security problems.

Recovery has two forms. The �rst is to stop an attack and to assess and
repair any damage caused by that attack. As an example, if the attacker deletes

Excerpt from Computer Security, 2/E, by Matthew Bishop (ISBN: 9780321712332). Copyright © 2019 Pearson Education, Inc.
Reproduction of any sort without permission from the publisher is strictly prohibited.

i
i

“Bishop_Ch01” — 2018/10/11 — 18:02 — page 11 — #11

i
i

i
i

i
i

1.4 Assumptions and Trust 11

a �le, one recovery mechanism would be to restore the �le from backup media.
In practice, recovery is far more complex, because the nature of each attack is
unique. Thus, the type and extent of any damage can be dif�cult to characterize
completely. Moreover, the attacker may return, so recovery involves identi�cation
and �xing of the vulnerabilities used by the attacker to enter the system. In some
cases, retaliation (by attacking the attacker’s system or taking legal steps to hold
the attacker accountable) is part of recovery. In all these cases, the system’s
functioning is inhibited by the attack. By de�nition, recovery requires resumption
of correct operation.

In a second form of recovery, the system continues to function correctly
while an attack is under way. This type of recovery is quite dif�cult to implement
because of the complexity of computer systems. It draws on techniques of fault
tolerance as well as techniques of security and is typically used in safety-critical
systems. It differs from the �rst form of recovery, because at no point does
the system function incorrectly. However, the system may disable nonessential
functionality. Of course, this type of recovery is often implemented in a weaker
form whereby the system detects incorrect functioning automatically and then
corrects (or attempts to correct) the error.

1.4 Assumptions and Trust

How do we determine whether a policy correctly describes the required level
and type of security for the site? This question lies at the heart of all security,
computer and otherwise. Security rests on assumptions speci�c to the type of
security required and the environment in which it is to be employed.

EXAMPLE: Opening a door lock requires a key. The assumption is that the lock is
secure against lock picking. This assumption is treated as an axiom and is made
because most people would require a key to open a door lock. A good lock picker,
however, can open a lock without a key. Hence, in an environment with a skilled,
untrustworthy lock picker, the assumption is wrong and the conclusion invalid.

If the lock picker is trustworthy, the assumption is still valid. The term
“trustworthy” implies that the lock picker will not pick a lock unless the owner
of the lock authorizes the lock picking. This is another example of the role of
trust. A well-de�ned exception to the rules provides a “back door” through which
the security mechanism (the locks) can be bypassed. The trust resides in the belief
that this back door will not be used except as speci�ed by the policy. If it is used,
the trust has been misplaced and the security mechanism (the lock) provides no
security.

Like the lock example, a policy consists of a set of axioms that the policy
makers believe can be enforced. Designers of policies always make two assump-
tions. First, the policy correctly and unambiguously partitions the set of system

Excerpt from Computer Security, 2/E, by Matthew Bishop (ISBN: 9780321712332). Copyright © 2019 Pearson Education, Inc.
Reproduction of any sort without permission from the publisher is strictly prohibited.

i
i

“Bishop_Ch01” — 2018/10/11 — 18:02 — page 12 — #12

i
i

i
i

i
i

12 Chapter 1 An Overview of Computer Security

states into “secure” and “nonsecure” states. Second, the security mechanisms
prevent the system from entering a “nonsecure” state. If either assumption is
erroneous, the system will be nonsecure.

These two assumptions are fundamentally different. The �rst assumption
asserts that the policy is a correct description of what constitutes a “secure”
system.

EXAMPLE: A bank’s policy may state that of�cers of the bank are authorized
to shift money among accounts. If a bank of�cer puts $100,000 in his account,
has the bank’s security been violated? Given the aforementioned policy statement,
no, because the of�cer was authorized to move the money. In the “real world,”
that action would constitute embezzlement, something any bank would consider
a security violation.

The second assumption says that the security policy can be enforced by
security mechanisms. These mechanisms are either secure, precise, or broad. Let
P be the set of all possible states. Let Q be the set of secure states (as speci�ed by
the security policy). Let the security mechanisms restrict the system to some set
of states R (thus, R ⊆ P). Then we have the following de�nition.

De�nition 1–3. A security mechanism is secure if R ⊆ Q; it is precise if
R = Q; and it is broad if there are states r such that r ∈ R and r /∈ Q.

Ideally, the union of all security mechanisms active on a system would pro-
duce a single precise mechanism (that is, R = Q). In practice, security mechanisms
are broad; they allow the system to enter nonsecure states. We will revisit this topic
when we explore policy formulation in more detail.

Trusting that mechanisms work requires several assumptions:

• Each mechanism is designed to implement one or more parts of the
security policy.

• The union of the mechanisms implements all aspects of the security
policy.

• The mechanisms are tamperproof.
• The mechanisms are implemented, installed, and administered correctly.

Because of the importance and complexity of trust and of assumptions, we
will revisit this topic repeatedly and in various guises throughout this book.

1.5 Assurance

Trust cannot be quanti�ed precisely. System speci�cation, design, and implemen-
tation can provide a basis for determining “how much” to trust a system. This

Excerpt from Computer Security, 2/E, by Matthew Bishop (ISBN: 9780321712332). Copyright © 2019 Pearson Education, Inc.
Reproduction of any sort without permission from the publisher is strictly prohibited.

i
i

“Bishop_Ch01” — 2018/10/11 — 18:02 — page 13 — #13

i
i

i
i

i
i

1.5 Assurance 13

aspect of trust is called assurance. It is an attempt to provide a basis for bolstering
(or substantiating or specifying) how much one can trust a system.

EXAMPLE: In the United States, aspirin from a nationally known and reputable
manufacturer, delivered to the drugstore in a safety-sealed container, and sold
with the seal still in place, is considered trustworthy by most people. The bases for
that trust are as follows.

• The testing and certi�cation of the drug (aspirin) by the Food and Drug
Administration (FDA). The FDA has jurisdiction over many types of
medicines and allows medicines to be marketed only if they meet certain
clinical standards of usefulness.

• The manufacturing standards of the company and the precautions it
takes to ensure that the drug is not contaminated. National and state
regulatory commissions and groups ensure that the manufacture of the
drug meets speci�c acceptable standards.

• The safety seal on the bottle. To insert dangerous chemicals into a safety-
sealed bottle without damaging the seal is very dif�cult.

The three technologies (certi�cation, manufacturing standards, and preven-
tative sealing) provide some degree of assurance that the aspirin is not contami-
nated. The degree of trust the purchaser has in the purity of the aspirin is a result
of these three processes.

In the 1980s, drug manufacturers met two of the criteria above, but none
used safety seals.1 A series of “drug scares” arose when a well-known manu-
facturer’s medicines were contaminated after manufacture but before purchase.
The manufacturer promptly introduced safety seals to assure its customers that
the medicine in the container was the same as when it was shipped from the
manufacturing plants.

Assurance in the computer world is similar. It requires speci�c steps to
ensure that the computer will function properly. The sequence of steps includes
detailed speci�cations of the desired (or undesirable) behavior; an analysis of
the design of the hardware, software, and other components to show that the
system will not violate the speci�cations; and arguments or proofs that the
implementation, operating procedures, and maintenance procedures will produce
the desired behavior.

De�nition 1–4. A system is said to satisfy a speci�cation if the speci�cation
correctly states how the system will function.

This de�nition also applies to design and implementation satisfying a
speci�cation.

1Many used childproof caps, but they prevented only some young children (and some adults) from
opening the bottles. They were not designed to protect the medicine from malicious adults.

Excerpt from Computer Security, 2/E, by Matthew Bishop (ISBN: 9780321712332). Copyright © 2019 Pearson Education, Inc.
Reproduction of any sort without permission from the publisher is strictly prohibited.

i
i

“Bishop_Ch01” — 2018/10/11 — 18:02 — page 14 — #14

i
i

i
i

i
i

14 Chapter 1 An Overview of Computer Security

1.5.1 Specification

A speci�cation is a (formal or informal) statement of the desired functioning of
the system. It can be highly mathematical, using any of several languages de�ned
for that purpose. It can also be informal, using, for example, English to describe
what the system should do under certain conditions. The speci�cation can be
low-level, combining program code with logical and temporal relationships to
specify ordering of events. The de�ning quality is a statement of what the system
is allowed to do or what it is not allowed to do.

EXAMPLE: A company is purchasing a new computer. They need to trust the sys-
tem cannot be successfully compromised from the Internet. One of their (English)
speci�cations would read “The system cannot be successfully compromised by an
attack over the Internet.”

Speci�cations are used not merely in security but also in systems designed
for safety, such as medical technology. They constrain such systems from perform-
ing acts that could cause harm. A system that regulates traf�c lights must ensure
that pairs of lights facing the same way turn red, green, and yellow at the same
time and that at most one set of lights facing cross streets at an intersection is
green.

A major part of the derivation of speci�cations is determination of the set
of requirements relevant to the system’s planned use. Sections 1.6 and 1.7 discuss
the relationship of operational and human requirements to security.

1.5.2 Design

The design of a system translates the speci�cations into components that will
implement them. The design is said to satisfy the speci�cations if, under all
relevant circumstances, the design will not permit the system to violate those
speci�cations.

EXAMPLE: A design of the computer system for the company mentioned above
had no network interface cards, no modem cards, and no network drivers in
the kernel. This design satis�ed the speci�cation because the system would not
connect to the Internet. Hence it could not be successfully attacked over the
Internet.

An analyst can determine whether a design satis�es a set of speci�cations
in several ways. If the speci�cations and designs are expressed in terms of
mathematics, the analyst must show that the design formulations are consistent
with the speci�cations. Although much of the work can be done mechanically, a
human must still perform some analyses and modify components of the design
that violate speci�cations (or, in some cases, components that cannot be shown to

Excerpt from Computer Security, 2/E, by Matthew Bishop (ISBN: 9780321712332). Copyright © 2019 Pearson Education, Inc.
Reproduction of any sort without permission from the publisher is strictly prohibited.

i
i

“Bishop_Ch01” — 2018/10/11 — 18:02 — page 15 — #15

i
i

i
i

i
i

1.5 Assurance 15

satisfy the speci�cations). If the speci�cations and design do not use mathematics,
then a convincing and compelling argument should be made. Most often, the
speci�cations are nebulous and the arguments are half-hearted and unconvincing
or provide only partial coverage. The design depends on assumptions about what
the speci�cations mean. This leads to vulnerabilities, as we will see.

1.5.3 Implementation

Given a design, the implementation creates a system that satis�es that design. If the
design also satis�es the speci�cations, then by transitivity the implementation will
also satisfy the speci�cations.

The dif�culty at this step is the complexity of proving that a program
correctly implements the design and, in turn, the speci�cations.

De�nition 1–5. A program is correct if its implementation performs as
speci�ed.

Proofs of correctness require each line of source code to be checked for
mathematical correctness. Each line is seen as a function, transforming the input
(constrained by preconditions) into some output (constrained by postconditions
derived from the function and the preconditions). Each routine is represented by
the composition of the functions derived from the lines of code making up the
routine. Like those functions, the function corresponding to the routine has inputs
and outputs, constrained by preconditions and postconditions, respectively. From
the combination of routines, programs can be built and formally veri�ed. One can
apply the same techniques to sets of programs and thus verify the correctness of
a system.

There are three dif�culties in this process. First, the complexity of programs
makes their mathematical veri�cation dif�cult. Aside from the intrinsic dif�cul-
ties, the program itself has preconditions derived from the environment of the
system. These preconditions are often subtle and dif�cult to specify, but unless
the mathematical formalism captures them, the program veri�cation may not be
valid because critical assumptions may be wrong. Second, program veri�cation
assumes that the programs are compiled correctly, linked and loaded correctly, and
executed correctly. Hardware failure, buggy code, and failures in other tools may
invalidate the preconditions. A compiler that incorrectly compiles the assignment

x := x + 1

to the assembly language instructions

move contents of x to regA
subtract 1 from contents of regA
move contents of regA to x

Excerpt from Computer Security, 2/E, by Matthew Bishop (ISBN: 9780321712332). Copyright © 2019 Pearson Education, Inc.
Reproduction of any sort without permission from the publisher is strictly prohibited.

i
i

“Bishop_Ch01” — 2018/10/11 — 18:02 — page 16 — #16

i
i

i
i

i
i

16 Chapter 1 An Overview of Computer Security

would invalidate the proof statement that the value of x after the line of code
is 1 more than the value of x before the line of code. This would invalidate the
proof of correctness. Third, if the veri�cation relies on conditions on the input,
the program must reject any inputs that do not meet those conditions. Otherwise,
the program is only partially veri�ed.

Because formal proofs of correctness are so time-consuming, a posteriori
veri�cation techniques known as testing have become widespread. During testing,
the tester executes the program (or portions of it) on data to determine if the
output is what it should be and to understand how likely the program is to
contain an error. Testing techniques range from supplying input to ensure that
all execution paths are exercised to introducing errors into the program and
determining how they affect the output to stating speci�cations and testing the
program to see if it satis�es the speci�cations. Although these techniques are
considerably simpler than the more formal methods, they do not provide the
same degree of assurance that formal methods do. Furthermore, testing relies on
test procedures and documentation, errors in either of which could invalidate the
testing results.

Although assurance techniques do not guarantee correctness or security,
they provide a �rm basis for assessing what one must trust in order to believe that
a system is secure. Their value is in eliminating possible, and common, sources of
error and forcing designers to de�ne precisely what the system is to do.

1.6 Operational Issues

Any useful policy and mechanism must balance the bene�ts of the protection
against the cost of designing, implementing, and using the mechanism. This
balance can be determined by analyzing the risks of a security breach and the
likelihood of it occurring. Such an analysis is, to a degree, subjective, because in
very few situations can risks be rigorously quanti�ed. Complicating the analysis
are the constraints that laws, customs, and society place on the acceptability
of security procedures and mechanisms; indeed, as these factors change, so do
security mechanisms and, possibly, security policies.

1.6.1 Cost-Benefit Analysis

Like any factor in a complex system, the bene�ts of computer security are
weighed against their total cost (including the additional costs incurred if the
system is compromised). If the data or resources cost less, or are of less value,
than their protection, adding security mechanisms and procedures is not cost-
effective because the data or resources can be reconstructed more cheaply than
the protections themselves. Unfortunately, this is rarely the case.

Excerpt from Computer Security, 2/E, by Matthew Bishop (ISBN: 9780321712332). Copyright © 2019 Pearson Education, Inc.
Reproduction of any sort without permission from the publisher is strictly prohibited.

i
i

“Bishop_Ch01” — 2018/10/11 — 18:02 — page 17 — #17

i
i

i
i

i
i

1.6 Operational Issues 17

EXAMPLE: A database provides salary information to a second system that prints
checks. If the data in the database is altered, the company could suffer grievous
�nancial loss; hence, even a cursory cost-bene�t analysis would show that the
strongest possible integrity mechanisms should protect the data in the database.

Now suppose the company has several branch of�ces, and every day the
database downloads a copy of the data to each branch of�ce. The branch of�ces
use the data to recommend salaries for new employees. However, the main of�ce
makes the �nal decision using the original database (not one of the copies). In this
case, guarding the integrity of the copies is not particularly important, because
branch of�ces cannot make any �nancial decisions based on the data in their
copies. Hence, the company cannot suffer any �nancial loss from compromises
of the data at the branch of�ces.

Both of these situations are extreme situations in which the analysis is clear-
cut. As an example of a situation in which the analysis is less clear, consider the
need for con�dentiality of the salaries in the database. The of�cers of the company
must decide the �nancial cost to the company should the salaries be disclosed,
including potential loss from lawsuits (if any); changes in policies, procedures,
and personnel; and the effect on future business. These are all business-related
judgments, and determining their value is part of what company of�cers are paid
to do.

Overlapping bene�ts are also a consideration. Suppose the integrity pro-
tection mechanism can be augmented very quickly and cheaply to provide con-
�dentiality. Then the cost of providing con�dentiality is much lower. This shows
that evaluating the cost of a particular security service depends on the mechanism
chosen to implement it and on the mechanisms chosen to implement other security
services. The cost-bene�t analysis should take into account as many mechanisms
as possible. Adding security mechanisms to an existing system is often more
expensive (and, incidentally, less effective) than designing them into the system
in the �rst place.

1.6.2 Risk Analysis

To determine whether an asset should be protected, and to what level, requires
analysis of the potential threats against that asset and the likelihood that they will
materialize. The level of protection is a function of the probability of an attack
occurring and the effects of the attack should it succeed. If an attack is unlikely,
protecting against it typically has a lower priority than protecting against a likely
one. If the unlikely attack would cause long delays in the company’s production
of widgets but the likely attack would be only a nuisance, then more effort should
be put into preventing the unlikely attack. The situations between these extreme
cases are very subjective.

Let’s revisit our company with the salary database that transmits salary
information over a network to a second computer that prints employees’ checks.

Excerpt from Computer Security, 2/E, by Matthew Bishop (ISBN: 9780321712332). Copyright © 2019 Pearson Education, Inc.
Reproduction of any sort without permission from the publisher is strictly prohibited.

i
i

“Bishop_Ch01” — 2018/10/11 — 18:02 — page 18 — #18

i
i

i
i

i
i

18 Chapter 1 An Overview of Computer Security

The data is stored on the database system and then moved over the network to the
second system. Hence, the risk of unauthorized changes in the data occurs in three
places: on the database system, on the network, and on the printing system. If the
network is a local (company-wide) one and no wide area networks are accessible,
the threat of attackers entering the systems is con�ned to untrustworthy internal
personnel, contractors, and visitors. If, however, the network is connected to the
Internet, the risk of geographically distant attackers attempting to intrude is
substantial enough to warrant consideration.

This example illustrates some �ner points of risk analysis. First, risk is a
function of environment. Attackers from a foreign country are not a threat to the
company when the computer is not connected to the Internet. If foreign attackers
wanted to break into the system, they would need to physically enter the company
(and would cease to be “foreign” because they would then be “local”). But if the
computer is connected to the Internet, foreign attackers become a threat because
they can attack over the Internet. An additional, less tangible issue is the faith
in the company. If the company is not able to meet its payroll because it does
not know who to pay, the company will lose the faith of its employees. It may be
unable to hire anyone, because the people hired would not be sure they would get
paid. Investors would not fund the company because of the likelihood of lawsuits
by unpaid employees. The risk arises from the environments in which the company
functions.

Second, the risks change with time. If a company’s network is not connected
to the Internet, there seems to be no risk of attacks from other hosts on the
Internet. However, despite any policies to the contrary, someone could connect
a wi-� access point to one of the company computers and connect to the Internet
through that access point. Should this happen, any risk analysis predicated on
isolation from the Internet would no longer be accurate. Although policies can
forbid the connection of such a modem and procedures can be put in place to
make such connection dif�cult, unless the responsible parties can guarantee that
no such modem will ever be installed, the risks can change.

Third, many risks are quite remote but still exist. In the wi-� access point
example, the company has sought to minimize the risk of an Internet connection.
Hence, this risk is “acceptable”but not nonexistent. As a practical matter, one does
not worry about acceptable risks; instead, one worries that the risk will become
unacceptable.

Finally, the problem of “analysis paralysis” refers to making risk analyses
with no effort to act on those analyses. To change the example slightly, suppose
the company performs a risk analysis. The executives decide that they are not sure
if all risks have been found, so they order a second study to verify the �rst. They
reconcile the studies then wait for some time to act on these analyses. At that point,
the security of�cers raise the objection that the conditions in the workplace are no
longer those that held when the original risk analyses were done. The analysis is
repeated. But the company cannot decide how to ameliorate the risks, so it waits
until a plan of action can be developed, and the process continues. The point is
that the company is paralyzed and cannot act on the risks it faces.

Excerpt from Computer Security, 2/E, by Matthew Bishop (ISBN: 9780321712332). Copyright © 2019 Pearson Education, Inc.
Reproduction of any sort without permission from the publisher is strictly prohibited.

i
i

“Bishop_Ch01” — 2018/10/11 — 18:02 — page 19 — #19

i
i

i
i

i
i

1.6 Operational Issues 19

1.6.3 Laws and Customs

Laws restrict the availability and use of technology and affect procedural controls.
Hence, any policy and any selection of mechanisms must take into account legal
considerations.

EXAMPLE: Until the year 2000, the United States controlled the export of
strong cryptographic hardware and software (considered munitions under United
States law). If a U.S. software company worked with a computer manufacturer
in London, the U.S. company could not send cryptographic software to the
manufacturer. The U.S. company �rst would have to obtain a license to export
the software from the United States. Any security policy that depended on the
London manufacturer’s using that cryptographic software would need to take this
into account.

EXAMPLE: Suppose the law makes it illegal to read a user’s �le without the user’s
permission. An attacker breaks into the system and begins to download users’
�les. If the system administrators notice this and observe what the attacker is
reading, they will be reading the victims’ �les without permission and therefore
violating the law themselves. For this reason, most sites require users to give
(implicit or explicit) permission for system administrators to read their �les. In
some jurisdictions, an explicit exception allows system administrators to access
information on their systems without permission in order to protect the quality
of service provided or to prevent damage to their systems.

Situations involving the laws of multiple jurisdictions—especially foreign
countries—complicate this issue.

EXAMPLE: In the 1990s, the laws involving the use of cryptography in France
were very different from those in the United States. The laws of France required
companies sending enciphered data out of the country to register their crypto-
graphic keys with the government. Security procedures involving the transmission
of enciphered data from a company in the United States to a branch of�ce in
France had to take these differences into account.

EXAMPLE: If a policy called for prosecution of attackers and intruders came
from Russia to a system in the United States, prosecution would involve asking
the United States authorities to extradite the alleged attackers from Russia. This
undoubtedly would involve court testimony from company personnel involved
in handling the intrusion, possibly trips to Russia, and more court time once
the extradition was completed. The cost of prosecuting the attackers might be
considerably higher than the company would be willing (or able) to pay.

Laws are not the only constraints on policies and selection of mechanisms.
Society distinguishes between legal and acceptable practices. It may be legal for a

Excerpt from Computer Security, 2/E, by Matthew Bishop (ISBN: 9780321712332). Copyright © 2019 Pearson Education, Inc.
Reproduction of any sort without permission from the publisher is strictly prohibited.

i
i

“Bishop_Ch01” — 2018/10/11 — 18:02 — page 20 — #20

i
i

i
i

i
i

20 Chapter 1 An Overview of Computer Security

company to require all its employees to provide DNA samples for authentication
purposes, but it is not socially acceptable. In the United States, requiring the use
of Social Security Numbers as passwords is often legal (unless a state law forbids
this or the computer is one owned by the U.S. government) but also unacceptable.
These practices provide security but at an unacceptable cost, and they encourage
users to evade or otherwise overcome the security mechanisms.

The issue that laws and customs raise is a psychological one. A security
mechanism that would put users and administrators at legal risk would place a
burden on these people that few would be willing to bear; thus, such a mechanism
would not be used. An unused mechanism is worse than a nonexistent one,
because it gives a false impression that a security service is available. Hence,
users may rely on that service to protect their data when in reality their data is
unprotected.

1.7 Human Issues

Implementing computer security controls is complex, and in a large organiza-
tion procedural controls often become vague or cumbersome. Regardless of the
strength of the technical controls, if nontechnical considerations affect their im-
plementation and use, the effect on security can be severe. Moreover, if con�gured
or used incorrectly, even the best security control is useless at best and dangerous
at worst. Thus, the designers, implementers, and maintainers of security controls
are essential to the correct operation of those controls.

1.7.1 Organizational Problems

Security provides no direct �nancial rewards to the user. It limits losses, but it also
requires the expenditure of resources that could be used elsewhere. Unless losses
occur, organizations often believe they are wasting money and effort on security.
After a loss, the value of these controls suddenly becomes appreciated. Further-
more, security controls often add complexity to otherwise simple operations. For
example, if concluding a stock trade takes two minutes without security controls
and three minutes with security controls, adding those controls results in a 50%
loss of productivity.

Losses occur when security protections are in place, but such losses are
expected to be less than they would have been without the security mechanisms.
The key question is whether such a loss, combined with the resulting loss in
productivity, would be greater than a �nancial loss or loss of con�dence should
one of the nonsecured transactions suffer a breach of security.

Compounding this problem is the question of who is responsible for the
security of the company’s computers. The authority to implement appropriate
controls must reside with those who are responsible; the consequence of not doing
so is that the people who can most clearly see the need for security measures,

Excerpt from Computer Security, 2/E, by Matthew Bishop (ISBN: 9780321712332). Copyright © 2019 Pearson Education, Inc.
Reproduction of any sort without permission from the publisher is strictly prohibited.

i
i

“Bishop_Ch01” — 2018/10/11 — 18:02 — page 21 — #21

i
i

i
i

i
i

1.7 Human Issues 21

and who are responsible for implementing them, will be unable to do so. This is
simply sound business practice; responsibility without power causes problems in
any organization, just as does power without responsibility.

Once clear chains of responsibility and power have been established, the
need for security can compete on equal footing with other needs of the organiza-
tion. One common problem security managers face is the lack of people trained
in the area of computer security. Another problem is that knowledgeable people
are overloaded with work. At many organizations, the “security administrator”
is also involved in system administration, development, or some other secondary
function. In fact, the security aspect of the job is often secondary. The problem is
that indications of security problems often are not obvious and require time and
skill to spot. Preparation for an attack makes dealing with it less chaotic, but such
preparation takes enough time and requires enough attention so that treating it
as a secondary aspect of a job means that it will not be performed well, with the
expected consequences.

Lack of resources is another common problem. Securing a system requires
resources as well as people. It requires time to design a con�guration that will
provide an adequate level of security, to implement the con�guration, and to
administer the system. It requires money to purchase products that are needed
to build an adequate security system or to pay someone else to design and
implement security measures. It requires computer resources to implement and
execute the security mechanisms and procedures. It requires training to ensure that
employees understand the importance of security, how to use the security tools,
how to interpret the results, and how to implement the nontechnical aspects of
the security policy.

1.7.2 People Problems

The heart of any security system is people. This is particularly true in computer
security, which deals mainly with technological controls that can usually be
bypassed by human intervention. For example, a computer system authenticates a
user by asking a human for a secret code; if the correct secret code is supplied, the
computer assumes that the human is the user, and grants the appropriate access.
If an authorized user tells another person his secret code, the unauthorized user
can masquerade as the authorized user with small risk of detection.

People who might attack an organization and are not authorized to use
that organization’s systems are called outsiders and can pose a serious threat.
Experts agree, however, that a far more dangerous threat comes from disgruntled
employees and other insiders who are authorized to use the computers. Insiders
typically know the organization of the company’s systems and what procedures
the operators and users follow and often know enough passwords to bypass many
security controls that would detect an attack launched by an outsider. Insider
misuse of authorized privileges is a very dif�cult problem to solve.

Untrained personnel also pose a threat to system security. As an example,
one operator did not realize that the contents of backup media needed to be

Excerpt from Computer Security, 2/E, by Matthew Bishop (ISBN: 9780321712332). Copyright © 2019 Pearson Education, Inc.
Reproduction of any sort without permission from the publisher is strictly prohibited.

i
i

“Bishop_Ch01” — 2018/10/11 — 18:02 — page 22 — #22

i
i

i
i

i
i

22 Chapter 1 An Overview of Computer Security

veri�ed before the media was stored. When attackers deleted several critical system
�les, she discovered that none of the backup media could be read.

System administrators who misread the output of security mechanisms, or
do not analyze that output, contribute to the probability of successful attacks
against their systems. Similarly, administrators who miscon�gure security-related
features of a system can weaken the site security. Users can also weaken site
security by misusing security mechanisms (such as selecting simple passwords that
are easy to memorize—and easy to guess).

Lack of technical training is not the only problem. Many successful break-
ins have arisen from the art of social engineering. If operators will change
passwords based on telephone requests, all an attacker needs to do is to determine
the name of someone who uses the computer. A common tactic is to pick someone
fairly far above the operator (such as a vice president of the company) and to feign
an emergency (such as calling at night and saying that a report to the president
of the company is due the next morning) so that the operator will be reluctant to
refuse the request. Once the password has been changed to one that the attacker
knows, he can simply log in as a normal user. Social engineering attacks are
remarkably successful and often devastating.

The problem of miscon�guration is aggravated by the complexity of many
security-related con�guration �les. For instance, a typographical error can disable
key protection features. Even worse, software does not always work as advertised.
One widely used system had a vulnerability that arose when an administrator
made too long a list that named systems with access to certain �les. Because the
list was too long, the system simply assumed that the administrator meant to allow
those �les to be accessed without restriction on who could access them—exactly
the opposite of what was intended.

1.8 Tying It All Together

The considerations discussed above appear to �ow linearly from one to the next
(see Figure 1–1). Human issues pervade each stage of the cycle. In addition, each
stage of the cycle feeds back to the preceding stage, and through that stage to
all earlier stages. The operation and maintenance stage is critical to the life cycle.
Figure 1–1 breaks it out so as to emphasize the impact it has on all stages. The
following example shows the importance of feedback.

EXAMPLE: A major corporation decided to improve its security. It hired con-
sultants, determined the threats, and created a policy. From the policy, the
consultants derived several speci�cations that the security mechanisms had to
meet. They then developed a design that would meet the speci�cations.

During the implementation phase, the company discovered that employees
could connect modems to the telephones without being detected. The design
required all incoming connections to go through a �rewall and had to be modi�ed
to divide systems into two classes: systems connected to “the outside,” which were

Excerpt from Computer Security, 2/E, by Matthew Bishop (ISBN: 9780321712332). Copyright © 2019 Pearson Education, Inc.
Reproduction of any sort without permission from the publisher is strictly prohibited.

i
i

“Bishop_Ch01” — 2018/10/11 — 18:02 — page 23 — #23

i
i

i
i

i
i

1.8 Tying It All Together 23

Threats

Requirements Analysis

Policy

Speci�cation

Design

Implementation

Operation and Maintenance

Figure 1–1 The security life cycle.

put outside the �rewall, and all other systems, which were put behind the �rewall.
The design needed other modi�cations as well.

When the system was deployed, the operation and maintenance phase
revealed several unexpected threats. The most serious was that systems were
repeatedly miscon�gured to allow sensitive data to be sent across the Internet
in the clear, because the implementation made using cryptographic software
very dif�cult. Once this problem had been remedied, the company discovered
that several “trusted” hosts (those allowed to log in without authentication)
were physically outside the control of the company. This violated policy, but for
commercial reasons the company needed to continue to use these hosts. The policy
element that designated these systems as “trusted” was modi�ed. Finally, the
company detected proprietary material being sent to a competitor over electronic
mail. This added a threat that the company had earlier discounted. The company
did not realize that it needed to worry about insider attacks.

Feedback from operation is critical. Whether or not a program is tested
or proved to be secure, operational environments always introduce unexpected
problems or dif�culties. If the assurance (speci�cation, design, implementation,
and testing/proof) phase is done properly, the extra problems and dif�culties
are minimal. The analysts can handle them, usually easily and quickly. If the
assurance phase has been omitted or done poorly, the problems may require a
complete reevaluation of the system. If the assurance did not take into account
the humans using or administering the system, they may �nd its operation

Excerpt from Computer Security, 2/E, by Matthew Bishop (ISBN: 9780321712332). Copyright © 2019 Pearson Education, Inc.
Reproduction of any sort without permission from the publisher is strictly prohibited.

i
i

“Bishop_Ch01” — 2018/10/11 — 18:02 — page 24 — #24

i
i

i
i

i
i

24 Chapter 1 An Overview of Computer Security

too complex or cumbersome and will develop ways to circumvent the security
controls. The tools used for the operational feedback include auditing, in which
the operation of the system is recorded and analyzed so that the analyst can
determine what the problems are.

1.9 Summary

Computer security depends on many aspects of a computer system, its use, and
its environment. The threats that a site faces, and the level and quality of the
countermeasures, depend on the quality of the security services and supporting
procedures. The speci�c mix of these attributes is governed by the site security
policy, which is ideally created after careful analysis of the value of the resources
on the system or controlled by the system and of the risks involved.

Underlying all this are key assumptions describing what the site and the
system accept as true or trustworthy; understanding these assumptions is the key
to analyzing the strength of the system’s security. This notion of “trust” is the
central notion for computer security. If trust is well placed, any system can be
made acceptably secure. If it is misplaced, the system cannot be secure in any
sense of the word.

Once this is understood, the reason that people consider security to be a
relative attribute is plain. Given enough resources, an attacker can often evade the
security procedures and mechanisms that are in place. Such a desire is tempered
by the cost of the attack, which in some cases can be very expensive. If it is less
expensive to regenerate the data than to launch the attack, most attackers will
simply regenerate the data.

This chapter has laid the foundation for what follows. All aspects of
computer security begin with the nature of threats and the security services that
counter them. In future chapters, we will build on these basic concepts.

1.10 Research Issues

Future chapters will explore research issues in the technical realm. However, other,
nontechnical issues affect the needs and requirements for technical solutions, and
research into these issues helps guide research into technical areas.

A key question is how to quantify risk. The research issue is how to
determine the effects of a system’s vulnerabilities on its security. For example, if
a system can be compromised in any of 50 ways, how can a company compare
the costs of the procedures (technical and otherwise) needed to prevent the
compromises with the costs of detecting the compromises, countering them, and
recovering from them? Many methods assign weights to the various factors, but
these methods are ad hoc. A rigorous technique for determining appropriate
weights has yet to be found.

Excerpt from Computer Security, 2/E, by Matthew Bishop (ISBN: 9780321712332). Copyright © 2019 Pearson Education, Inc.
Reproduction of any sort without permission from the publisher is strictly prohibited.

i
i

“Bishop_Ch01” — 2018/10/11 — 18:02 — page 25 — #25

i
i

i
i

i
i

1.12 Exercises 25

The relationships of computer security to the political, social, and eco-
nomic aspects of the world are not well understood. How does the ubiquity
of the Internet change a country’s borders? If someone starts at a computer
in France, transits networks that cross Switzerland, Germany, Poland, Norway,
Sweden, and Finland, and launches an attack on a computer in Russia, who has
jurisdiction? How can a country limit the economic damage caused by an attack
on its computer networks? How can attacks be traced to their human origins?

This chapter has also raised many technical questions. Research issues
arising from them will be explored in future chapters.

1.11 Further Reading

Risk analysis arises in a variety of contexts. Molak [1369] presents essays on
risk management and analysis in a variety of �elds. Laudan [1141] provides an
enjoyable introduction to the subject. Neumann [1444] discusses the risks of
technology and recent problems. Software safety (Leveson [1155]) requires an un-
derstanding of the risks posed in the environment. Peterson [1518] discusses many
programming errors in a readable way. All provide insights into the problems that
arise in a variety of environments.

Many authors recount stories of security incidents. The earliest, Parker’s
wonderful book [1496], discusses motives and personalities as well as technical
details. Stoll recounts the technical details of uncovering an espionage ring that
began as the result of a 75¢ accounting error [1829, 1831]. Hafner and Markoff
describe the same episode in a study of “cyberpunks” [842]. The Internet worm
[619,842,1600,1796,1797] brought the problem of computer security into popular
view. Numerous other incidents [723,842,1199,1736,1763,1822] have heightened
public awareness of the problem.

Several books [249,442,707,1637] discuss computer security for the layper-
son. These works tend to focus on attacks that are visible or affect the end user
(such as pornography, theft of credit card information, and deception). They are
worth reading for those who wish to understand the results of failures in computer
security. Other books [742,1687,1743,1782,1930] discuss the impact of computer
and information security upon society. Social engineering is also widely discussed
[559, 1206, 1244, 1363, 1561].

1.12 Exercises

1. Classify each of the following as a violation of con�dentiality, of integrity, of
availability, or of some combination thereof.

a. John copies Mary’s homework.
b. Paul crashes Linda’s system.

Excerpt from Computer Security, 2/E, by Matthew Bishop (ISBN: 9780321712332). Copyright © 2019 Pearson Education, Inc.
Reproduction of any sort without permission from the publisher is strictly prohibited.

i
i

“Bishop_Ch01” — 2018/10/11 — 18:02 — page 26 — #26

i
i

i
i

i
i

26 Chapter 1 An Overview of Computer Security

c. Carol changes the amount of Angelo’s check from $100 to $1,000.
d. Gina forges Roger’s signature on a deed.
e. Rhonda registers the domain name “Pearson.com” and refuses to let the

publishing house buy or use that domain name.
f. Jonah obtains Peter’s credit card number and has the credit card com-

pany cancel the card and replace it with another card bearing a different
account number.

g. Henry spoofs Julie’s IP address to gain access to her computer.

2. Identify mechanisms for implementing the following. State what policy or
policies they might be enforcing.

a. A password-changing program will reject passwords that are less than
�ve characters long or that are found in the dictionary.

b. Only students in a computer science class will be given accounts on the
department’s computer system.

c. The login program will disallow logins of any students who enter their
passwords incorrectly three times.

d. The permissions of the �le containing Carol’s homework will prevent
Robert from cheating and copying it.

e. When World Wide Web traf�c climbs to more than 80% of the network’s
capacity, systems will disallow any further communications to or from
web servers.

f. Annie, a systems analyst, will be able to detect a student using a program
to scan her system for vulnerabilities.

g. A program used to submit homework will turn itself off just after the
due date.

3. The aphorism “security through obscurity” suggests that hiding information
provides some level of security. Give an example of a situation in which hiding
information does not add appreciably to the security of a system. Then give
an example of a situation in which it does.

4. Give an example of a situation in which a compromise of con�dentiality leads
to a compromise in integrity.

5. Show that the three security services—con�dentiality, integrity, and
availability—are suf�cient to deal with the threats of disclosure, disruption,
deception, and usurpation.

6. In addition to mathematical and informal statements of policy, policies can be
implicit (not stated). Why might this be done? Might it occur with informally
stated policies? What problems can this cause?

Excerpt from Computer Security, 2/E, by Matthew Bishop (ISBN: 9780321712332). Copyright © 2019 Pearson Education, Inc.
Reproduction of any sort without permission from the publisher is strictly prohibited.

i
i

“Bishop_Ch01” — 2018/10/11 — 18:02 — page 27 — #27

i
i

i
i

i
i

1.12 Exercises 27

7. For each of the following statements, give an example of a situation in which
the statement is true.

a. Prevention is more important than detection and recovery.
b. Detection is more important than prevention and recovery.
c. Recovery is more important than prevention and detection.

8. Is it possible to design and implement a system in which no assumptions about
trust are made? Why or why not?

9. Policy restricts the use of electronic mail on a particular system to faculty and
staff. Students cannot send or receive electronic mail on that host. Classify the
following mechanisms as secure, precise, or broad.

a. The electronic mail sending and receiving programs are disabled.
b. As each letter is sent or received, the system looks up the sender (or

recipient) in a database. If that party is listed as faculty or staff, the mail
is processed. Otherwise, it is rejected. (Assume that the database entries
are correct.)

c. The electronic mail sending programs ask the user if he or she is a
student. If so, the mail is refused. The electronic mail receiving programs
are disabled.

10. Consider a very high-assurance system developed for the military. The system
has a set of speci�cations, and both the design and implementation have been
proven to satisfy the speci�cations. What questions should school administra-
tors ask when deciding whether to purchase such a system for their school’s
use?

11. How do laws protecting privacy impact the ability of system administrators
to monitor user activity?

12. Computer viruses are programs that, among other actions, can delete �les
without a user’s permission. A U.S. legislator wrote a law banning the deletion
of any �les from computer disks. What was the problem with this law from
a computer security point of view? Speci�cally, state which security service
would have been affected if the law had been passed.

13. Users often bring in programs or download programs from the Internet.
Give an example of a site for which the bene�ts of allowing users to do this
outweigh the dangers. Then give an example of a site for which the dangers
of allowing users to do this outweigh the bene�ts.

14. A respected computer scientist has said that no computer can ever be made
perfectly secure. Why might she have said this?

Excerpt from Computer Security, 2/E, by Matthew Bishop (ISBN: 9780321712332). Copyright © 2019 Pearson Education, Inc.
Reproduction of any sort without permission from the publisher is strictly prohibited.

i
i

“Bishop_Ch01” — 2018/10/11 — 18:02 — page 28 — #28

i
i

i
i

i
i

28 Chapter 1 An Overview of Computer Security

15. An organization makes each lead system administrator responsible for the
security of the system he or she runs. However, the management determines
what programs are to be on the system and how they are to be con�gured.

a. Describe the security problem(s) that this division of power would
create.

b. How would you �x them?

16. The president of a large software development company has become con-
cerned about competitors learning proprietary information. He is determined
to stop them. Part of his security mechanism is to require all employees to
report any contact with employees of the company’s competitors, even if it
is purely social. Do you believe this will have the desired effect? Why or why
not?

17. The police and the public defender share a computer. What security problems
does this present? Do you feel it is a reasonable cost-saving measure to have
all public agencies share the same (set of) computers?

18. Companies usually restrict the use of electronic mail to company business but
do allow minimal use for personal reasons.

a. How might a company detect excessive personal use of electronic mail,
other than by reading it? (Hint: Think about the personal use of a
company telephone.)

b. Intuitively, it seems reasonable to ban all personal use of electronic mail
on company computers. Explain why most companies do not do this.

19. Argue for or against the following proposition. Ciphers that the government
cannot cryptanalyze should be outlawed. How would your argument change
if such ciphers could be used provided that the users registered the keys with
the government?

20. For many years, industries and �nancial institutions hired people who broke
into their systems once those people were released from prison. Now, such
a conviction tends to prevent such people from being hired. Why you think
attitudes on this issue changed? Do you think they changed for the better or
for the worse?

21. A graduate student accidentally releases a program that spreads from com-
puter system to computer system. It deletes no �les but requires much time to
implement the necessary defenses. The graduate student is convicted. Despite
demands that he be sent to prison for the maximum time possible (to make
an example of him), the judge sentences him to pay a �ne and perform
community service. What factors do you believe caused the judge to hand
down the sentence he did? What would you have done were you the judge,
and what extra information would you have needed to make your decision?

Excerpt from Computer Security, 2/E, by Matthew Bishop (ISBN: 9780321712332). Copyright © 2019 Pearson Education, Inc.
Reproduction of any sort without permission from the publisher is strictly prohibited.

