Chapter 3: Foundational Results

- Overview
- Harrison-Ruzzo-Ullman result
 - Corollaries

Overview

- Safety Question
- HRU Model

What Is "Secure"?

- Adding a generic right r where there was not one is "leaking"
- If a system S, beginning in initial state s_0 , cannot leak right r, it is safe with respect to the right r.

Safety Question

- Does there exist an algorithm for determining whether a protection system S with initial state s_0 is safe with respect to a generic right r?
 - Here, "safe" = "secure" for an abstract model

Mono-Operational Commands

- Answer: yes
- Sketch of proof:

Consider minimal sequence of commands $c_1, ..., c_k$ to leak the right.

- Can omit delete, destroy
- Can merge all creates into one

Worst case: insert every right into every entry; with s subjects and o objects initially, and n rights, upper bound is $k \le n(s+1)(o+1)$

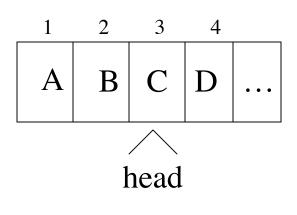
General Case

- Answer: no
- Sketch of proof:

Reduce halting problem to safety problem Turing Machine review:

- Infinite tape in one direction
- States K, symbols M; distinguished blank b
- Transition function $\delta(k, m) = (k', m', L)$ means in state k, symbol m on tape location replaced by symbol m', head moves to left one square, and enters state k'
- Halting state is q_f ; TM halts when it enters this state

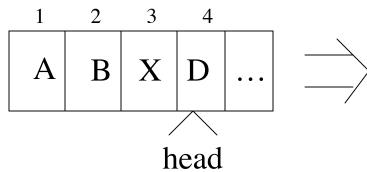
Mapping



Current state is *k*

>		s_1	s_2	s_3	s_4	
	s_1	A	own			
	s_2		В	own		
	s_3			C k	own	
	S_4				D end	

Mapping



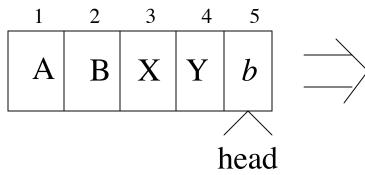
After $\delta(k, C) = (k_1, X, R)$ where k is the current state and k_1 the next state

>		s_1	s_2	s_3	s_4	
	s_1	A	own			
	s_2		В	own		
	s_3			X	own	
	S_4				$D k_1$ end	

Command Mapping

```
\delta(k,C)=(k_1,X,R) at intermediate becomes command c_{k,C}(s_3,s_4) if own in A[s_3,s_4] and k in A[s_3,s_3] and C in A[s_3,s_3] then delete k from A[s_3,s_3]; delete C from A[s_3,s_3]; enter C into A[s_3,s_3]; enter C into C
```

Mapping



After $\delta(k_1, D) = (k_2, Y, R)$ where k_1 is the current state and k_2 the next state

>		s_1	s_2	s_3	S_4	<i>S</i> ₅
	s_1	A	own			
	s_2		В	own		
	s_3			X	own	
	S_4				Y	own
	<i>S</i> ₅					$b k_2$ end

Command Mapping

```
\delta(k_1, D) = (k_2, Y, R) at end becomes command crightmost<sub>k,C</sub>(s_4, s_5) if end in A[s_4, s_4] and k_1 in A[s_4, s_4] and D in A[s_4, s_4] then delete end from A[s_4, s_4]; create subject s_5; enter own into A[s_4, s_5]; enter end into A[s_5, s_5]; delete k_1 from A[s_4, s_4]; enter Y into A[s_4, s_4]; enter k_2 into A[s_5, s_5]; end
```

Rest of Proof

- Protection system exactly simulates a TM
 - Exactly 1 end right in ACM
 - 1 right in entries corresponds to state
 - Thus, at most 1 applicable command
- If TM enters state q_f , then right has leaked
- If safety question decidable, then represent TM as above and determine if q_f leaks
 - Implies halting problem decidable
- Conclusion: safety question undecidable

Other Results

- Set of unsafe systems is recursively enumerable
- Delete create primitive; then safety question is complete in P-SPACE
- Delete **destroy**, **delete** primitives; then safety question is undecidable
 - Systems are monotonic
- Safety question for monoconditional, monotonic protection systems is decidable
- Safety question for monoconditional protection systems with **create**, **enter**, **delete** (and no **destroy**) is decidable.

Key Points

- Safety problem undecidable
- Limiting scope of systems can make problem decidable