
November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #15-1

Chapter 15: Information Flow

• Definitions
• Compiler-based mechanisms
• Execution-based mechanisms
• Examples

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #15-2

Overview

• Basics and background
• Compiler-based mechanisms
• Execution-based mechanisms
• Examples

– Security Pipeline Interface
– Secure Network Server Mail Guard

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #15-3

Basics

• Bell-LaPadula Model embodies
information flow policy
– Given compartments A, B, info can flow from

A to B iff B dom A
• Variables x, y assigned compartments x, y

as well as values
– If x = A and y = B, and A dom B, then y := x

allowed but not x := y

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #15-4

Information Flow

• Idea: info flows from x to y as a result of a
sequence of commands c if you can deduce
information about x before c from the value
in y after c

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #15-5

Example 1

• Command is x := y + z; where:
– 0 ≤ y ≤ 7, equal probability
– z = 1 with prob. 1/2, z = 2 or 3 with prob. 1/4

each
• If you know final value of x, initial value of

y can have at most 3 values, so information
flows from y to x

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #15-6

Example 2

• Command is
– if x = 1 then y := 0 else y := 1;

where:
– x, y equally likely to be either 0 or 1

• But if x = 1 then y = 0, and vice versa, so
value of y depends on x

• So information flowed from x to y

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #15-7

Implicit Flow of Information

• Information flows from x to y without an
explicit assignment of the form y := f(x)
– f(x) an arithmetic expression with variable x

• Example from previous slide:
– if x = 1 then y := 0
else y := 1;

• So must look for implicit flows of
information to analyze program

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #15-8

Notation

• x means class of x
– In Bell-LaPadula based system, same as “label

of security compartment to which x belongs”
• x ≤ y means “information can flow from an

element in class of x to an element in class
of y
– Or, “information with a label placing it in class

x can flow into class y”

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #15-9

Compiler-Based Mechanisms

• Detect unauthorized information flows in a
program during compilation

• Analysis not precise, but secure
– If a flow could violate policy (but may not), it is

unauthorized
– No unauthorized path along which information could

flow remains undetected
• Set of statements certified with respect to

information flow policy if flows in set of
statements do not violate that policy

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #15-10

Example

if x = 1 then y := a;
else y := b;
• Info flows from x and a to y, or from x and

b to y
• Certified only if x ≤ y and a ≤ y and b ≤ y

– Note flows for both branches must be true
unless compiler can determine that one branch
will never be taken

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #15-11

Declarations

• Notation:
x: int class { A, B }

 means x is an integer variable with security
class at least lub{ A, B }, so lub{ A, B } ≤ x

• Distinguished classes Low, High
– Constants are always Low

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #15-12

Input Parameters

• Parameters through which data passed into
procedure

• Class of parameter is class of actual
argument

ip: type class { ip }

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #15-13

Output Parameters

• Parameters through which data passed out of
procedure
– If data passed in, called input/output parameter

• As information can flow from input parameters to
output parameters, class must include this:

op: type class { r1, …, rn }
where ri is class of ith input or input/output
argument

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #15-14

Example

proc sum(x: int class { A };
var out: int class { A, B });

begin
out := out + x;

end;
• Require x ≤ out and out ≤ out

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #15-15

Array Elements

• Information flowing out:
… := a[i]

Value of i, a[i] both affect result, so class is
lub{ a[i], i }

• Information flowing in:
a[i] := …

• Only value of a[i] affected, so class is a[i]

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #15-16

Assignment Statements

x := y + z;
• Information flows from y, z to x, so this

requires lub{ y, z } ≤ x
More generally:
y := f(x1, …, xn)

• the relation lub{ x1, …, xn } ≤ y must hold

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #15-17

Compound Statements

x := y + z; a := b * c – x;
• First statement: lub{ y, z } ≤ x
• Second statement: lub{ b, c, x } ≤ a
• So, both must hold (i.e., be secure)
More generally:
S1; … Sn;

• Each individual Si must be secure

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #15-18

Conditional Statements
if x + y < z then a := b else d := b * c – x; end

• The statement executed reveals information about
x, y, z, so lub{ x, y, z } ≤ glb{ a, d }

More generally:
if f(x1, …, xn) then S1 else S2; end
• S1, S2 must be secure
• lub{ x1, …, xn } ≤
 glb{y | y target of assignment in S1, S2 }

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #15-19

Iterative Statements
while i < n do begin a[i] := b[i]; i := i + 1;

end

• Same ideas as for “if”, but must terminate
More generally:
while f(x1, …, xn) do S;
• Loop must terminate;
• S must be secure
• lub{ x1, …, xn } ≤
 glb{y | y target of assignment in S }

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #15-20

Iterative Statements
while i < n do begin a[i] := b[i]; i := i + 1; end

• Same ideas as for “if”, but must terminate
More generally:
while f(x1, …, xn) do S;
• Loop must terminate;
• S must be secure
• lub{ x1, …, xn } ≤
 glb{y | y target of assignment in S }

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #15-21

Goto Statements

• No assignments
– Hence no explicit flows

• Need to detect implicit flows
• Basic block is sequence of statements that

have one entry point and one exit point
– Control in block always flows from entry point

to exit point

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #15-22

Example Program
proc tm(x: array[1..10][1..10] of int class {x};
 var y: array[1..10][1..10] of int class {y});
var i, j: int {i};
begin
b1 i := 1;
b2 L2: if i > 10 goto L7;
b3 j := 1;
b4 L4: if j > 10 then goto L6;
b5 y[j][i] := x[i][j]; j := j + 1; goto L4;
b6 L6: i := i + 1; goto L2;
b7 L7:
end;

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #15-23

Flow of Control

b1 b2 b7

b6
b3

b4

b5

i > n

i ≤ n

j > n

j ≤ n

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #15-24

IFDs

• Idea: when two paths out of basic block, implicit
flow occurs
– Because information says which path to take

• When paths converge, either:
– Implicit flow becomes irrelevant; or
– Implicit flow becomes explicit

• Immediate forward dominator of basic block b
(written IFD(b)) is first basic block lying on all
paths of execution passing through b

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #15-25

IFD Example

• In previous procedure:
– IFD(b1) = b2 one path
– IFD(b2) = b7 b2→b7 or b2→b3→b6→b2→b7

– IFD(b3) = b4 one path
– IFD(b4) = b6 b4→b6 or b4→b5→b6

– IFD(b5) = b4 one path
– IFD(b6) = b2 one path

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #15-26

Requirements

• Bi is set of basic blocks along an execution path
from bi to IFD(bi)
– Analogous to statements in conditional statement

• xi1, …, xin variables in expression selecting which
execution path containing basic blocks in Bi used
– Analogous to conditional expression

• Requirements for secure:
– All statements in each basic blocks are secure
– lub{ xi1, …, xin } ≤
 glb{ y | y target of assignment in Bi }

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #15-27

Example of Requirements

• Within each basic block:
b1: Low ≤ i b3: Low ≤ j b6: lub{ Low, i } ≤ i
b5: lub{ x[i][j], i, j } ≤ y[j][i] }; lub{ Low, j } ≤ j
– Combining, lub{ x[i][j], i, j } ≤ y[j][i] }
– From declarations, true when lub{ x, i } ≤ y

• B2 = {b3, b4, b5, b6}
– Assignments to i, j, y[j][i]; conditional is i ≤ 10
– Requires i ≤ glb{ i, j, y[j][i] }
– From declarations, true when i ≤ y

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #15-28

Example (continued)

• B4 = { b5 }
– Assignments to j, y[j][i]; conditional is j ≤ 10
– Requires j ≤ glb{ j, y[j][i] }
– From declarations, means i ≤ y

• Result:
– Combine lub{ x, i } ≤ y; i ≤ y; i ≤ y
– Requirement is lub{ x, i } ≤ y

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #15-29

Procedure Calls
tm(a, b);
From previous slides, to be secure, lub{ x, i } ≤ y must hold
• In call, x corresponds to a, y to b
• Means that lub{ a, i } ≤ b, or a ≤ b
More generally:
proc pn(i1, …, im: int; var o1, …, on: int)
begin S end;
• S must be secure
• For all j and k, if ij ≤ ok, then xj ≤ yk
• For all j and k, if oj ≤ ok, then yj ≤ yk

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #15-30

Exceptions
proc copy(x: int class { x };
 var y: int class Low)
var sum: int class { x };
 z: int class Low;
begin
 y := z := sum := 0;
 while z = 0 do begin
 sum := sum + x;
 y := y + 1;
 end
end

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #15-31

Exceptions (cont)

• When sum overflows, integer overflow trap
– Procedure exits
– Value of x is MAXINT/y
– Info flows from y to x, but x ≤ y never checked

• Need to handle exceptions explicitly
– Idea: on integer overflow, terminate loop
on integer_overflow_exception sum do z := 1;

– Now info flows from sum to z, meaning sum ≤ z
– This is false (sum = { x } dominates z = Low)

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #15-32

Infinite Loops
proc copy(x: int 0..1 class { x };
 var y: int 0..1 class Low)
begin
 y := 0;
 while x = 0 do
 (* nothing *);
 y := 1;
end
• If x = 0 initially, infinite loop
• If x = 1 initially, terminates with y set to 1
• No explicit flows, but implicit flow from x to y

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #15-33

Semaphores

Use these constructs:
wait(x): if x = 0 then block until x > 0; x := x – 1;
signal(x): x := x + 1;

– x is semaphore, a shared variable
– Both executed atomically

Consider statement
wait(sem); x := x + 1;

• Implicit flow from sem to x
– Certification must take this into account!

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #15-34

Flow Requirements

• Semaphores in signal irrelevant
– Don’t affect information flow in that process

• Statement S is a wait
– shared(S): set of shared variables read

• Idea: information flows out of variables in shared(S)
– fglb(S): glb of assignment targets following S
– So, requirement is shared(S) ≤ fglb(S)

• begin S1; … Sn end
– All Si must be secure
– For all i, shared(Si) ≤ fglb(Si)

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #15-35

Example
begin
 x := y + z; (* S1 *)
 wait(sem); (* S2 *)
 a := b * c – x; (* S3 *)
end
• Requirements:

– lub{ y, z } ≤ x
– lub{ b, c, x } ≤ a
– sem ≤ a

• Because fglb(S2) = a and shared(S2) = sem

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #15-36

Concurrent Loops

• Similar, but wait in loop affects all statements in
loop
– Because if flow of control loops, statements in loop

before wait may be executed after wait
• Requirements

– Loop terminates
– All statements S1, …, Sn in loop secure
– lub{ shared(S1), …, shared(Sn) } ≤ glb(t1, …, tm)

• Where t1, …, tm are variables assigned to in loop

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #15-37

Loop Example
while i < n do begin
 a[i] := item; (* S1 *)
 wait(sem); (* S2 *)
 i := i + 1; (* S3 *)
end
• Conditions for this to be secure:

– Loop terminates, so this condition met
– S1 secure if lub{ i, item } ≤ a[i]
– S2 secure if sem ≤ i and sem ≤ a[i]
– S3 trivially secure

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #15-38

cobegin/coend
cobegin
 x := y + z; (* S1 *)
 a := b * c – y; (* S2 *)
coend

• No information flow among statements
– For S1, lub{ y, z } ≤ x
– For S2, lub{ b, c, y } ≤ a

• Security requirement is both must hold
– So this is secure if lub{ y, z } ≤ x ∧ lub{ b, c, y } ≤ a

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #15-39

Soundness

• Above exposition intuitive
• Can be made rigorous:

– Express flows as types
– Equate certification to correct use of types
– Checking for valid information flows same as

checking types conform to semantics imposed
by security policy

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #15-40

Execution-Based Mechanisms

• Detect and stop flows of information that violate
policy
– Done at run time, not compile time

• Obvious approach: check explicit flows
– Problem: assume for security, x ≤ y

if x = 1 then y := a;
– When x ≠ 1, x = High, y = Low, a = Low, appears

okay—but implicit flow violates condition!

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #15-41

Fenton’s Data Mark Machine

• Each variable has an associated class
• Program counter (PC) has one too
• Idea: branches are assignments to PC, so

you can treat implicit flows as explicit flows
• Stack-based machine, so everything done

in terms of pushing onto and popping from
a program stack

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #15-42

Instruction Description

• skip means instruction not executed
• push(x, x) means push variable x and its

security class x onto program stack
• pop(x, x) means pop top value and security

class from program stack, assign them to
variable x and its security class x
respectively

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #15-43

Instructions

• x := x + 1 (increment)
– Same as:
if PC ≤ x then x := x + 1 else skip

• if x = 0 then goto n else x := x – 1 (branch
and save PC on stack)
– Same as:
if x = 0 then begin
push(PC, PC); PC := lub{PC, x}; PC := n;

 end else if PC ≤ x then
x := x - 1

else
skip;

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #15-44

More Instructions

• if’ x = 0 then goto n else x := x – 1
(branch without saving PC on stack)
– Same as:
if x = 0 then
if x ≤ PC then PC := n else skip
else
if PC ≤ x then x := x – 1 else skip

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #15-45

More Instructions

• return (go to just after last if)
– Same as:
pop(PC, PC);

• halt (stop)
– Same as:
if program stack empty then halt

– Note stack empty to prevent user obtaining information
from it after halting

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #15-46

Example Program
1 if x = 0 then goto 4 else x := x – 1
2 if z = 0 then goto 6 else z := z – 1
3 halt
4 z := z – 1
5 return
6 y := y – 1
7 return
• Initially x = 0 or x = 1, y = 0, z = 0
• Program copies value of x to y

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #15-47

Example Execution
x y z PC PC stack check
1 0 0 1 Low —
0 0 0 2 Low — Low ≤ x
0 0 0 6 z (3, Low)
0 1 0 7 z (3, Low) PC ≤ y
0 1 0 3 Low —

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #15-48

Handling Errors

• Ignore statement that causes error, but
continue execution
– If aborted or a visible exception taken, user

could deduce information
– Means errors cannot be reported unless user

has clearance at least equal to that of the
information causing the error

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #15-49

Variable Classes

• Up to now, classes fixed
– Check relationships on assignment, etc.

• Consider variable classes
– Fenton’s Data Mark Machine does this for PC
– On assignment of form y := f(x1, …, xn), y

changed to lub{ x1, …, xn }
– Need to consider implicit flows, also

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #15-50

Example Program
(* Copy value from x to y
 * Initially, x is 0 or 1 *)
proc copy(x: int class { x };

var y: int class { y })
var z: int class variable { Low };
begin

y := 0;
z := 0;
if x = 0 then z := 1;
if z = 0 then y := 1;

end;

• z changes when z assigned to
• Assume y < x

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #15-51

Analysis of Example

• x = 0
– z := 0 sets z to Low
– if x = 0 then z := 1 sets z to 1 and z to x
– So on exit, y = 0

• x = 1
– z := 0 sets z to Low
– if z = 0 then y := 1 sets y to 1 and checks that

lub{Low, z} ≤ y
– So on exit, y = 1

• Information flowed from x to y even though y < x

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #15-52

Handling This (1)

• Fenton’s Data Mark Machine detects
implicit flows violating certification rules

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #15-53

Handling This (2)

• Raise class of variables assigned to in
conditionals even when branch not taken

• Also, verify information flow requirements even
when branch not taken

• Example:
– In if x = 0 then z := 1, z raised to x whether or

not x = 0
– Certification check in next statement, that z ≤ y, fails,

as z = x from previous statement, and y ≤ x

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #15-54

Handling This (3)

• Change classes only when explicit flows occur,
but all flows (implicit as well as explicit) force
certification checks

• Example
– When x = 0, first “if” sets z to Low then checks x ≤ z
– When x = 1, first “if” checks that x ≤ z
– This holds if and only if x = Low

• Not possible as y < x = Low and there is no such class

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #15-55

Example Information Flow
Control Systems

• Use access controls of various types to
inhibit information flows

• Security Pipeline Interface
– Analyzes data moving from host to destination

• Secure Network Server Mail Guard
– Controls flow of data between networks that

have different security classifications

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #15-56

Security Pipeline Interface

• SPI analyzes data going to, from host
– No access to host main memory
– Host has no control over SPI

host

second disk

first diskSPI

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #15-57

Use

• Store files on first disk
• Store corresponding crypto checksums on second

disk
• Host requests file from first disk

– SPI retrieves file, computes crypto checksum
– SPI retrieves file’s crypto checksum from second disk
– If a match, file is fine and forwarded to host
– If discrepency, file is compromised and host notified

• Integrity information flow restricted here
– Corrupt file can be seen but will not be trusted

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #15-58

Secure Network Server Mail
Guard (SNSMG)

• Filters analyze outgoing messages
– Check authorization of sender
– Sanitize message if needed (words and viruses, etc.)

• Uses type checking to enforce this
– Incoming, outgoing messages of different type
– Only appropriate type can be moved in or out

MTA MTA

out in

filters
SECRET
computer

UNCLASSIFIED
computer

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #15-59

Key Points

• Both amount of information, direction of
flow important
– Flows can be explicit or implicit

• Compiler-based checks flows at compile
time

• Execution-based checks flows at run time

