
November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #16-1

Chapter 16: Confinement
Problem

• What is the problem?
• Isolation: virtual machines, sandboxes
• Detecting covert channels
• Analyzing covert channels
• Mitigating covert channels

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #16-2

Overview

• The confinement problem
• Isolating entities

– Virtual machines
– Sandboxes

• Covert channels
– Detecting them
– Analyzing them
– Mitigating them

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #16-3

Example Problem

• Server balances bank accounts for clients
• Server security issues:

– Record correctly who used it
– Send only balancing info to client

• Client security issues:
– Log use correctly
– Do not save or retransmit data client sends

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #16-4

Generalization

• Client sends request, data to server
• Server performs some function on data
• Server returns result to client
• Access controls:

– Server must ensure the resources it accesses on behalf
of client include only resources client is authorized to
access

– Server must ensure it does not reveal client’s data to
any entity not authorized to see the client’s data

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #16-5

Confinement Problem

• Problem of preventing a server from
leaking information that the user of the
service considers confidential

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #16-6

Total Isolation

• Process cannot communicate with any
other process

• Process cannot be observed

Impossible for this process to leak information
– Not practical as process uses observable

resources such as CPU, secondary storage,
networks, etc.

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #16-7

Example

• Processes p, q not allowed to communicate
– But they share a file system!

• Communications protocol:
– p sends a bit by creating a file called 0 or 1, then a

second file called send
• p waits until send is deleted before repeating to send another

bit
– q waits until file send exists, then looks for file 0 or 1;

whichever exists is the bit
• q then deletes 0, 1, and send and waits until send is recreated

before repeating to read another bit

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #16-8

Covert Channel

• A path of communication not designed to
be used for communication

• In example, file system is a (storage) covert
channel

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #16-9

Rule of Transitive Confinement

• If p is confined to prevent leaking, and it
invokes q, then q must be similarly
confined to prevent leaking

• Rule: if a confined process invokes a
second process, the second process must be
as confined as the first

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #16-10

Lipner’s Notes

• All processes can obtain rough idea of time
– Read system clock or wall clock time
– Determine number of instructions executed

• All processes can manipulate time
– Wait some interval of wall clock time
– Execute a set number of instructions, then

block

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #16-11

Kocher’s Attack

• This computes x = az mod n, where z = z0 … zk–1

x := 1; atmp := a;
for i := 0 to k–1 do begin
if zi = 1 then

x := (x * atmp) mod n;
atmp := (atmp * atmp) mod n;

end
result := x;

• Length of run time related to number of 1 bits in z

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #16-12

Isolation

• Virtual machines
– Emulate computer
– Process cannot access underlying computer

system, anything not part of that computer
system

• Sandboxing
– Does not emulate computer
– Alters interface between computer, process

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #16-13

Virtual Machine (VM)

• A program that simulates hardware of computer
system

• Virtual machine monitor (VMM) provides VM on
which conventional OS can run
– Each VM is one subject; VMM knows nothing about

processes running on each VM
– VMM mediates all interactions of VM with resources,

other VMS
– Satisfies rule of transitive closure

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #16-14

Example: KVM/370

• Security-enhanced version of IBM VM/370 VMM
• Goals

– Provide virtual machines for users
– Prevent VMs of different security classes from

communicating
• Provides minidisks; some VMs could share some

areas of disk
– Security policy controlled access to shared areas to

limit communications to those allowed by policy

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #16-15

DEC VAX VMM

• VMM is security kernel
– Can run Ultrix OS or VMS OS

• Invoked on trap to execute privileged instruction
– Only VMM can access hardware directly
– VM kernel, executive levels both mapped into physical

executive level
• VMM subjects: users, VMs

– Each VM has own disk areas, file systems
– Each subject, object has multilevel security, integrity

labels

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #16-16

Sandbox

• Environment in which actions of process
are restricted according to security policy
– Can add extra security-checking mechanisms

to libraries, kernel
• Program to be executed is not altered

– Can modify program or process to be executed
• Similar to debuggers, profilers that add breakpoints
• Add code to do extra checks (memory access, etc.)

as program runs (software fault isolation)

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #16-17

Example: Limiting Execution
• Sidewinder

– Uses type enforcement to confine processes
– Sandbox built into kernel; site cannot alter it

• Java VM
– Restricts set of files that applet can access and hosts to which

applet can connect
• DTE, type enforcement mechanism for DTEL

– Kernel modifications enable system administrators to configure
sandboxes

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #16-18

Example: Trapping System Calls

• Janus: execution environment
– Users restrict objects, modes of access

• Two components
– Framework does run-time checking
– Modules determine which accesses allowed

• Configuration file controls modules loaded,
constraints to be enforced

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #16-19

Janus Configuration File
basic module
basic

— Load basic module
define subprocess environment variables
putenv IFS=”\t\n “ PATH=/sbin:/bin:/usr/bin TZ=PST8PDT

— Define environmental variables for process
deny access to everything except files under /usr
path deny read,write *
path allow read,write /usr/*

— Deny all file accesses except to those under /usr
allow subprocess to read files in library directories
needed for dynamic loading
path allow read /lib/* /usr/lib/* /usr/local/lib/*

— Allow reading of files in these directories (all dynamic load libraries are here)
needed so child can execute programs
path allow read,exec /sbin/* /bin/* /usr/bin/*

— Allow reading, execution of subprograms in these directories

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #16-20

Janus Implementation

• System calls to be monitored defined in modules
• On system call, Janus framework invoked

– Validates system call with those specific parameters
are allowed

– If not, sets process environment to indicate call failed
– If okay, framework gives control back to process; on

return, framework invoked to update state
• Example: reading MIME mail

– Embed “delete file” in Postscript attachment
– Set Janus to disallow Postscript engine access to files

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #16-21

Covert Channels

• Channel using shared resources as a
communication path

• Covert storage channel uses attribute of
shared resource

• Covert timing channel uses temporal or
ordering relationship among accesses to
shared resource

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #16-22

Example: File Manipulation

• Communications protocol:
– p sends a bit by creating a file called 0 or 1, then a

second file called send
• p waits until send is deleted before repeating to send another

bit
– q waits until file send exists, then looks for file 0 or 1;

whichever exists is the bit
• q then deletes 0, 1, and send and waits until send is recreated

before repeating to read another bit

• Covert storage channel: resource is directory,
names of files in directory

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #16-23

Example: Real-Time Clock

• KVM/370 had covert timing channel
– VM1 wants to send 1 bit to VM2
– To send 0 bit: VM1 relinquishes CPU as soon as it gets

CPU
– To send 1 bit: VM1 uses CPU for full quantum
– VM2 determines which bit is sent by seeing how

quickly it gets CPU
– Shared resource is CPU, timing because real-time

clock used to measure intervaps between accesses

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #16-24

Example: Ordering of Events

• Two VMs
– Share cylinders 100–200 on a disk
– One is High, one is Low; process on High VM

wants to send to process on Low VM
• Disk scheduler uses SCAN algorithm
• Low process seeks to cylinder 150 and

relinquishes CPU
– Now we know where the disk head is

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #16-25

Example (con’t)

• High wants to send a bit
– To send 1 bit, High seeks to cylinder 140 and

relinquish CPU
– To send 0 bit, High seeks to cylinder 160 and

relinquish CPU
• Low issues requests for tracks 139 and 161

– Seek to 139 first indicates a 1 bit
– Seek to 161 first indicates a 0 bit

• Covert timing channel: uses ordering relationship
among accesses to transmit information

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #16-26

Noise

• Noiseless covert channel uses shared
resource available to sender, receiver only

• Noisy covert channel uses shared resource
available to sender, receive, and others
– Need to minimize interference enough so that

message can be read in spite of others’ use of
channel

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #16-27

Key Properties

• Existence
– Determining whether the covert channel exists

• Bandwidth
– Determining how much information can be

sent over the channel

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #16-28

Detection

• Covert channels require sharing
• Manner of sharing controls which subjects

can send, which subjects can receive
information using that shared resource

• Porras, Kemmerer: model flow of
information through shared resources with
a tree
– Called covert flow trees

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #16-29

Goal Symbol Tree Nodes
• Modification: attribute modified
• Recognition: attribute modification detected
• Direct recognition: subject can detect attribute

modification by referencing attribute directly or calling
function that returns it

• Inferred recognition: subject can detect attribute
modification without direct reference

• Inferred-via: info passed from one attribute to another via
specified primitive (e.g. syscall)

• Recognized-new-state: modified attribute specified by
inferred-via goal

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #16-30

Other Tree Nodes

• Operation symbol represents primitive operation
• Failure symbol indicates information cannot be

sent along path
• And symbol reached when for all children

– Child is operation; and
– If child goal, then goal is reached

• Or symbol reached when for any child:
– Child is operation; or
– If child goal, then goal is reached

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #16-31

Constructing Tree

• Example: files in file system have 3 attributes
– locked: true when file locked
– isopen: true when file opened
– inuse: set containing PID of processes having file open

• Functions:
– read_access(p, f): true if p has read rights over file f
– empty(s): true if set s is empty
– random: returns one of its arguments chosen at random

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #16-32

Locking and Opening Routines
(* lock the file if it is not locked and
not opened; otherwise indicate it is
locked by returning false *)
procedure Lockfile(f: file): boolean;
begin

if not f.locked and empty(f.inuse)
then

f.locked := true;
end;
(* unlock the file *)
procedure Unlockfile(f: file);
begin

if f.locked then
f.locked := false;

end;
(* say whether the file is locked *)
function Filelocked(f: file): boolean;
begin

Filelocked := f.locked;
end;

(* open the file if it isn’t locked and
the process has the right to read the
file *)
procedure Openfile(f: file);
begin

if not f.locked and
read_access(process_id, f) then

(* add process ID to inuse set *)
f.inuse = f.inuse + process_id;

end;
(* if the process can read the file, say
if the file is open, otherwise return a
value at random *)
function Fileopened(f: file): boolean;
begin

if not read_access(process_id, f) then
Fileopened := random(true, false);

else
Fileopened := not isempty(f.inuse);

end

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #16-33

Attributes and Operations

inuse∅locked∅∅return

∅inuse∅∅lockedmodify

inuselocked,
inuse

lockedlockedlocked,
inuse

reference

FileopenedOpenfileFilelockedUnlockfileLockfile

∅ means no attribute affected in specified manner

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #16-34

Tree Construction

• This is for attribute locked
– Goal state: “covert storage channel via

attribute locked”
– Type of goal controls construction

• “And” node has 2 children, a
“modification” and a “recognition”
– Here, both “of attribute locked”

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #16-35

First Step

• Put “and” node under
goal

• Put children under
“and” node

Covert storage channel
via attribute locked

Modification of
attribute locked

Recognition of
attribute locked

•

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #16-36

Second Step

• Operations Lockfile
and Unlockfile modify
locked
– See attribute and

operations table

Modification of

attribute locked

Lockfile Unlockfile

+

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #16-37

Third Step
• “Recognition” had direct,

inferred recognition
children

• Direct recognition child:
“and” node with
Filelocked child
– Filelocked returns value of

locked
• Inferred recognition

child: “or” node with
“inferred-via” node
– Infers locked from inuse

Recognition of
attribute locked

+

Direct recognition of
attribute locked

+

Filelocked

Indirect recognition of
attribute locked

+

Infer attribute locked
via attribute inuse

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #16-38

Fourth Step

• “Inferred-via” node
requires Openfile
– Change in attribute

inuse represented by
recognize-new-state
goal

Openfile

Infer attribute locked
via attribute inuse

•

Recognition of
attribute inuse

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #16-39

Fifth Step
• “Recognize-new-state”

node
– Direct recognition node:

“or” child, Fileopened
node beneath (recognizes
change in inuse directly)

– Inferred recognition node:
“or” child, FALSE node
beneath (nothing
recognizes change in inuse
indirectly)

Recognition of
attribute inuse

+

Direct recognition of
attribute inuse

Indirect recognition of
attribute inuse

+

Fileopened

+

FALSE

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #16-40

Final Tree

M
o
d
ificatio

n
 o

f
attrib

u
te lo

cked

L
o
ckfile

U
n
lo
ckfile

+

R
eco

g
n
itio

n
 o

f
attrib

u
te lo

cked

+

D
irect reco

g
n

itio
n
 o

f
attribu

te lo
cked

+

F
ilelo

cked

In
d
irect reco

g
n
itio

n
 o

f
attrib

u
te lo

cked

+

In
fer attrib

u
te lo

cked
v
ia attrib

u
te in

u
se

O
p
en
file

•

R
eco

g
n
itio

n
 o

f
attrib

u
te in

u
se

+

D
irect reco

g
n
itio

n
 o

f
attrib

u
te in

u
se

In
d
irect reco

g
n
itio

n
 o

f
attrib

u
te in

u
se

+

F
ileo

p
en
ed

+

FA
L

S
E

C
o
v
ert sto

rag
e ch

an
n
el

v
ia attrib

u
te lo

cked

•

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #16-41

Finding Covert Channels

• Find sequences of operations that modify
attribute
– (Lockfile), (Unlockfile)

• Find sequences of operations that recognize
modifications to attribute
– (Filelocked), (Openfile, Fileopened))

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #16-42

Covert Channel Commands

• Sequences with first element from first list,
second element from second list
– Lockfile, then Filelocked
– Unlockfile, then Filelocked
– Lockfile, then Openfile, then Fileopened
– Unlockfile, then Openfile, then Fileopened

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #16-43

Mitigation

• Goal: obscure amount of resources a
process uses
– Receiver cannot determine what part sender is

using and what part is obfuscated
• How to do this?

– Devote uniform, fixed amount of resources to
each process

– Inject randomness into allocation, use of
resources

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #16-44

Example: Pump

communications buffer
holds n items

Low process High process

High
buffer

Low
buffer

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #16-45

Covert Timing Channel

• High process can control rate at which pump
sends it messages

• Initialization: Low sends messages to pump until
communications buffer full
– Low gets ACK for each message put into the buffer;

no ACK for messages when communications buffer full
• Protocol: sequence of trials; for each trial

– High sends a 1 by reading a message
• Then Low gets ACK when it sends another message

– High sends a 0 by not reading a message
• Then Low doesn’t gets ACK when it sends another message

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #16-46

How to Fix

• Assume: Low process, pump can process
messages faster than High process

• Case 1: High process handles messages more
quickly than Low process gets acknowledgements
– Pump artificially delaying ACKs

• Low process waits for ACK regardless of whether buffer is full
– Low cannot tell whether buffer is full

• Closes covert channel
– Not optimal (processes may wait even when

unnecessary)

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #16-47

How to Fix (con’t)

• Case 2: Low process sends messages faster than
High process can remove them
– Maximizes performance
– Opens covert channel

• Case 3: Pump, processes handle messages at same
rate
– Decreases bandwidth of covert channel, increases

performance
– Opens covert channel, sub-optimal performance

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #16-48

Adding Noise to Direct Channel

• Kang, Moskowitz: do this in such a way as
to approximate case 3
– Reduces covert channel’s capacity to 1/nr

• r time between Low process sending message and
receiving ACK when buffer not full

– Conclusion: pump substantially reduces
capacity of covert channel between High, Low
processes when compared with direct
connection

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #16-49

Key Points

• Confinement problem: prevent leakage of
information
– Solution: separation and/or isolation

• Shared resources offer paths along which
information can be transferred

• Covert channels difficult if not impossible
to eliminate
– Bandwidth can be greatly reduced, however!

