
November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-1

Chapter 26: Program Security

• Introduction
• Requirements and Policy
• Design
• Refinement and Implementation
• Common Security-Related Programming

Problems
• Testing, Maintenance, and Operation
• Distribution

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-2

Introduction

• Goal: implement program that:
– Verifies user’s identity
– Determines if change of account allowed
– If so, places user in desired role

• Similar to su(1) for UNIX and Linux
systems
– User supplies his/her password, not target

account’s

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-3

Why?

• Eliminate password sharing problem
– Role accounts under Linux are user accounts
– If two or more people need access, both need role

account’s password
• Program solves this problem

– Runs with root privileges
– User supplies his/her password to authenticate
– If access allowed, program spawns command

interpreter with privileges of role account

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-4

Requirements

1. Access to role account based on user,
location, time of request

2. Settings of role account’s environment
replaces corresponding settings of user’s
environment, but rest of user’s
environment preserved

3. Only root can alter access control
information for access to role account

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-5

More Requirements

4. Mechanism provides restricted,
unrestricted access to role account
• Restricted: run only specified commands
• Unrestricted: access command interpreter

5. Access to files, directories, objects owned
by role account restricted to those
authorized to use role account, users
trusted to install system programs, root

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-6

Threats

• Group 1: Unauthorized user (UU) accessing role
accounts
1. UU accesses role account as though authorized user
2. Authorized user uses nonsecure channel to obtain

access to role account, thereby revealing
authentication information to UU

3. UU alters access control information to gain access to
role account

4. Authorized user executes Trojan horse giving UU
access to role account

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-7

Relationships

User’s search path restricted to own
or role account; only trusted users,
role account can manipulate
executables

2, 4, 54

Restricts change to trusted users33

Restricts location from where user
can access role account

12

Restricts who can access role
account, protects access control data

1, 51
notesrequirementthreat

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-8

More Threats

• Group 2: Authorized user (AU) accessing
role accounts
5. AU obtains access to role account, performs

unauthorized commands
6. AU executes command that performs

functions that user not authorized to perform
7. AU changes restrictions on user’s ability to

obtain access to role account

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-9

Relationships

root users trusted; users with access
to role account trusted

37

Prevent introduction of Trojan horse2, 56

Allows user restricted access to role
account, so user can run only
specific commands

45
notesrequirementthreat

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-10

Design

• Framework for hooking modules together
– User interface
– High-level design

• Controlling access to roles and commands
– Interface
– Internals
– Storage of access control data

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-11

User Interface

• User wants unrestricted access or to run a specific
command (restricted access)

• Assume command line interface
– Can add GUI, etc. as needed

• Command
role role_account [command]

where
– role_account name of role account
– command command to be run (optional)

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-12

High-Level Design

1. Obtain role account, command, user, location,
time of day
• If command omitted, assume command interpreter

(unrestricted access)
2. Check user allowed to access role account

a) at specified location;
b) at specified time; and
c) for specified command (or without restriction)

If user not, log attempt and quit

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-13

High-Level Design (con’t)

3. Obtain user, group information for role account;
change privileges of process to role account

4. If user requested specific command, overlay
process with command interpreter that spawns
named command

5. If user requested unrestricted access, overlay
process with command interpreter allowing
interactive use

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-14

Ambiguity in Requirements

• Requirements 1, 4 do not say whether command
selection restricted by time, location
– This design assumes it is

• Backups may need to be run at 1AM and only 1AM
• Alternate: assume restricted only by user, role; equally

reasonable
– Update requirement 4 to be: Mechanism provides

restricted, unrestricted access to role account
• Restricted: run only specified commands
• Unrestricted: access command interpreter

Level of access (restricted, unrestricted) depends on
user, role, time, location

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-15

Access to Roles, Commands

• Module determines whether access to be
allowed
– If it can’t get user, role, location, and/or time,

error; return failure
• Interface: controls how info passed

between module, caller
• Internal structure: how does module handle

errors, access control data structures

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-16

Interface to Module

• Minimize amount of information being passed
through interface
– Follow standard ideas of information hiding
– Module can get user, time of day, location from system
– So, need pass only command (if any), role account

name
• boolean accessok(role rname, command cmd)

– rname: name of role
– cmd: command (empty if unrestricted access desired)
– returns true if access granted, false if not (or error)

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-17

Internals of Module

• Part 1: gather data to determine if access
allowed

• Part 2: retrieve access control information
from storage

• Part 3: compare two, determine if access
allowed

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-18

Part 1

• Required:
– user ID: who is trying to access role account
– time of day: when is access being attempted

• From system call to operating system
– entry point: terminal or network connection
– remote host: name of host from which user

accessing local system (empty if on local
system)

• These make up location

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-19

Part 2

• Obtain handle for access control file
– May be called a “descriptor”

• Contents of file is sequence of records:
role account
user names
locations from which the role account can be accessed
times when the role account can be accessed
command and arguments

• Can list multiple commands, arguments in 1
record
– If no commands listed, unrestricted access

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-20

Part 3

• Iterate through access control file
– If no more records

• Release handle
• Return failure

– Check role
• If not a match, skip record (go back to top)

– Check user name, location, time, command
• If any does not match, skip record (go back to top)

– Release handle
– Return success

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-21

 Storing Access Control Data

• Sequence of records; what should contents
of fields be?
– Location: *any*, *local*, host, domain;

operators not, or (‘,’)
local , control.fixit.com , .watchu.edu

– User: *any*, user name; operators not, or (‘,’)
peter , paul , mary , joan , janis

– Time: *any*, time range

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-22

Time Representation

• Use ranges expressed (reasonably) normally
Mon-Thu 9AM-5PM
– Any time between 9AM and 5PM on Mon, Tue, Wed,

or Thu
Mon 9AM-Thu 5PM
– Any time between 9AM Monday and 5PM Thursday
Apr 15 8AM-Sep 15 6PM
– Any time from 8AM on April 15 to 6PM on September

15, on any year

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-23

Commands

• Command plus arguments shown
/bin/install *
– Execute /bin/install with any arguments
/bin/cp log /var/inst/log
– Copy file log to /var/inst/log
/usr/bin/id
– Run program id with no arguments

• User need not supply path names, but commands
used must be the ones with those path names

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-24

Refinement and Implementation

• First-level refinement
• Second-level refinement
• Functions

– Obtaining location
– Obtaining access control record
– Error handling in reading, matching routines

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-25

First-Level Refinement

• Use pseudocode:
boolean accessok(role rname, command cmd);

stat ← false
user ← obtain user ID
timeday ← obtain time of day
entry ← obtain entry point (terminal line, remote host)
open access control file
repeat
rec ← get next record from file; EOF if none
if rec ≠ EOF then

stat ← match(rec, rname, cmd, user, timeday, entry)
until rec = EOF or stat = true
close access control file

return stat

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-26

Check Sketch

• Interface right
• Stat (holds status of access control check) false

until match made, then true
• Get user, time of day, location (entry)
• Iterates through access control records

– Get next record
– If there was one, sets stat to result of match
– Drops out when stat true or no more records

• Close file, releasing handle
• Return stat

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-27

Second-Level Refinement

• Map pseudocode to particular language,
system
– We’ll use C, Linux (UNIX-like system)
– Role accounts same as user accounts

• Interface decisions
– User, role ID representation
– Commands and arguments
– Result

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-28

Users and Roles

• May be name (string) or uid_t (integer)
– In access control file, either representation okay

• If bogus name, can’t be mapped to uid_t
• Kernel works with uid_t

– So access control part needs to do conversion to uid_t
at some point

• Decision: represent all user, role IDs as uid_t
• Note: no design decision relied upon

representation of user, role accounts, so no need
to revisit any

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-29

Commands, Arguments, Result

• Command is program name (string)
• Argument is sequence of words (array of

string pointers)
• Result is boolean (integer)

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-30

Resulting Interface
int accessok(uid_t rname, char *cmd[]);

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-31

Second-Level Refinement

• Obtaining user ID
• Obtaining time of day
• Obtaining location
• Opening access control file
• Processing records
• Cleaning up

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-32

Obtaining User ID

• Which identity?
– Effective ID: identifies privileges of process

• Must be 0 (root), so not this one
– Real ID: identifies user running process

userid = getuid();

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-33

Obtain Time of Day

• Internal representation is seconds since
epoch
– On Linux, epoch is Jan 1, 1970 00:00:00

timeday = time(NULL);

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-34

Obtaining Location

• System dependent
– So we defer, encapsulating it in a function to

be written later

entry = getlocation();

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-35

Opening Access Control File

• Note error checking and logging

if ((fp = fopen(acfile, “r”)) == NULL){
 logerror(errno, acfile);
 return(stat);

}

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-36

Processing Records

• Internal record format not yet decided
– Note use of functions to delay deciding this
do {
 acrec = getnextacrec(fp);
 if (acrec != NULL)
 stat = match(rec, rname, cmd, user,

 timeday, entry);
} until (acrec == NULL || stat == 1);

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-37

Cleaning Up

• Release handle by closing file

(void) fclose(fp);
return(stat);

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-38

Getting Location

• On login, Linux writes user name, terminal name,
time, and name of remote host (if any) in file utmp

• Every process may have associated terminal
• To get location information:

– Obtain associated process terminal name
– Open utmp file
– Find record for that terminal
– Get associated remote host from that record

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-39

Security Problems

• If any untrusted process can alter utmp file,
contents cannot be trusted
– Several security holes came from this

• Process may have no associated terminal
• Design decision: if either is true, return

meaningless location
– Unless location in access control file is any

wildcard, fails

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-40

getlocation() Outline
hostname getlocation()

myterm ← name of terminal associated with process
obtain utmp file access control list
if any user other than root can alter it then

return “*nowhere*”
open utmp file
repeat

term ← get next record from utmp file; EOF if none
if term ≠ EOF and myterm = term then stat ← true
else stat ← false

until term = EOF or stat = true
if host field in utmp record = empty then

host ← “localhost”
else host ← host field of utmp record
close utmp file

return host

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-41

Access Control Record

• Consider match routine
– User name is uid_t (integer) internally

• Easiest: require user name to be uid_t in file
• Problems: (1) human-unfriendly; (2) unless binary

data recorded, still need to convert
• Decision: in file, user names are strings (names or

string of digits representing integer)
– Location, set of commands strings internally

• Decision: in file, represent them as strings

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-42

Time Representation

• Here, time is an interval
– May 30 means “any time on May 30”, or “May

30 12AM-May 31 12AM
• Current time is integer internally

– Easiest: require time interval to be two integers
– Problems: (1) human-unfriendly; (2) unless

binary data recorded, still need to convert
– Decision: in file, time interval represented as

string

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-43

Record Format

• Here, commands is repeated once per command,
and numcommands is number of commands fields
record

role rname
string userlist
string location
string timeofday
string commands[]
…
string commands[]
integer numcommands

end record;

• May be able to compute numcommands from
record

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-44

Error Handling

• Suppose syntax error or garbled record
• Error cannot be ignored

– Log it so system administrator can see it
• Include access control file name, line or record number

– Notify user, or tell user why there is an error, different
question

• Can just say “access denied”
• If error message, need to give access control file name, line

number
– Suggests error, log routines part of accessok module

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-45

Implementation

• Concern: many common security-related
programming problems
– Present management and programming rules
– Use framework for describing problems

• NRL: our interest is technical modeling, not reason
for or time of introduction

• Aslam: want to look at multiple components of
vulnerabilities

• Use PA or RISOS; we choose PA

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-46

Improper Choice of Initial
Protection Domain

• Arise from incorrect setting of permissions
or privileges
– Process privileges
– Access control file permissions
– Memory protection
– Trust in system

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-47

Process Privileges

• Least privilege: no process has more
privileges than needed, but each process
has the privileges it needs

• Implementation Rule 1:
– Structure the process so that all sections

requiring extra privileges are modules. The
modules should be as small as possible and
should perform only those tasks that
require those privileges.

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-48

Basis

• Reference monitor
– Verifiable: here, modules are small and simple
– Complete: here, access to privileged resource only

possible through privileges, which require program to
call module

– Tamperproof: separate modules with well-defined
interfaces minimizes chances of other parts of program
corrupting those modules

• Note: this program, and these modules, are not
reference monitors!
– We’re approximating reference monitors …

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-49

More Process Privileges

• Insufficient privilege: denial of service
• Excessive privilege: attacker could exploit

vulnerabilities in program
• Management Rule 1:

– Check that the process privileges are set
properly.

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-50

Implementation Issues

• Can we have privileged modules in our
environment?
– No; this is a function of the OS
– Cannot acquire privileges after start, unless process

started with those privileges
• Which role account?

– Non-root: requires separate program for each role
account

– Root: one program can handle all role accounts

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-51

Program and Privilege

• Program starts with root privileges
• Access control module called

– Needs these privileges to read access control file
• Privileges released

– But they can be reacquired …
• Privileges reacquired for switch to role account

– Because root can switch to any user
• Key points: privileges acquired only when

needed, and relinquished once immediate task is
complete

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-52

Access Control File Permissions

• Integrity of process relies upon integrity of
access control file

• Management Rule 2:
– The program that is executed to create the

process, and all associated control files, must
be protected from unauthorized use and
modification. Any such modification must
be detected.

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-53

Program and File

• Program checks integrity of access control
file whenever it runs

• Check dependencies, too
– If access control file depends on other external

information (like environment variables,
included files, etc.), check them

– Document these so maintainers will know what
they are

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-54

Permissions

• Set these so only root can alter, move
program, access control file

• Implementation Rule 2:
– Ensure that any assumptions in the

program are validated. If this is not
possible, document them for the installers
and maintainers, so they know the
assumptions that attackers will try to
invalidate.

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-55

UNIX Implementation

• Checking permissions: 3 steps
– Check root owns file
– Check no group write permission, or that root

is single member of the group owner of file
• Check list of members of that group first
• Check password file next, to ensure no other users

have primary GID the same as the group; these
users need not be listed in group file to be group
members

– Check no world read, write permission

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-56

Memory Protection

• Shared memory: if two processes have
access, one can change data other relies
upon, or read data other considers secret

• Implementation Rule 3
– Ensure that the program does not share

objects in memory with any other program,
and that other programs cannot access the
memory of a privileged process.

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-57

Memory Management

• Don’t let data be executed, or constants change
– Declare constants in program as const
– Turn off execute permission for data pages/segments
– Do not use dynamic loading

• Management Rule 3:
– Configure memory to enforce the principle of least

privilege. If a section of memory is not to contain
executable instructions, turn execute permission off
for that section of memory. If the contents of a
section of memory are not to be altered, make that
section read-only.

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-58

Trust

• What does program trust?
– System authentication mechanisms to authenticate

users
– UINFO to map users, roles into UIDs
– Inability of unprivileged users to alter system clock

• Management Rule 4:
– Identify all system components on which the

program depends. Check for errors whenever
possible, and identify those components for which
error checking will not work.

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-59

Improper Isolation of
Implementation Detail

• Look for errors, failures of mapping from
abstraction to implementation
– Usually come out in error messages

• Implementation Rule 4:
– The error status of every function must be checked.

Do not try to recover unless the cause of the error,
and its effects, do not affect any security
considerations. The program should restore the
state of the system to the state before the process
began, and then terminate.

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-60

Resource Exhaustion,
User Identifiers

• Role, user are abstractions
– The system works with UIDs

• How is mapping done?
– Via user information database

• What happens if mapping can’t be made?
– In one mail server, returned a default user—so by

arranging that the mapping failed, anyone could have
mail appended to any file to which default user could
write

– Better: have program fail

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-61

Validating Access Control
Entries

• Access control file data implements constraints on
access
– Therefore, it’s a mapping of abstraction to

implementation
• Develop second program using same modules as

first
– Prints information in easy-to-read format
– Must be used after each change to file, to verify change

does what was desired
– Periodic checks too

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-62

Restricting Protection Domain

• Use overlays rather than spawning child
– Overlays replace original protection domain with that

of overlaid program
– Programmers close all open files, reset signal handlers,

changing privileges to that of role
– Potential problem: saved UID, GID

• When privileges dropped in usual way, can regain them
because original UID is saved; this is how privileges restored

• Use setuid system call to block this; it changes saved UID too

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-63

Improper Change

• Data that changes unexpectedly or
erroneously

• Memory
• File contents
• File/object bindings

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-64

Memory

• Synchronize interactions with other
processes

• Implementation Rule 5:
– If a process interacts with other processes,

the interactions should be synchronized. In
particular, all possible sequences of
interactions must be known and, for all such
interactions, the process must enforce the
required security policy.

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-65

More Memory

• Asynchronous exception handlers: may alter
variables, state
– Much like concurrent process

• Implementation Rule 6:
– Asynchronous exception handlers should not alter

any variables except those that are local to the
exception handling module. An exception handler
should block all other exceptions when begun, and
should not release the block until the handler
completes execution, unless the handler has been
designed to handle exceptions within itself (or calls
an uninvoked exception handler).

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-66

Buffer Overflows

• Overflow not the problem
• Changes to variables, state caused by overflow is

the problem
– Example: fingerd example: overflow changes return

address to return into stack
• Fix at compiler level: put random number between buffer,

return address; check before return address used
– Example: login program that stored unhashed, hashed

password in adjacent arrays
• Enter any 8-char password, hit space 72 times, enter hash of

that password, and system authenticates you!

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-67

Problem

• Trusted data can be affected by untrusted data
– Trusted data: return address, hash loaded from

password file
– Untrusted data: anything user reads

• Implementation Rule 7:
– Whenever possible, data that the process trusts and

data that it receives from untrusted sources (such
as input) should be kept in separate areas of
memory. If data from a trusted source is
overwritten with data from an untrusted source, a
memory error will occur.

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-68

Our Program

• No interaction except through exception handling
– Implementation Rule 5 does not apply

• Exception handling: disable further exception
handling, log exception, terminate program
– Meets Implementation Rule 6

• Do not reuse variables used for data input; ensure
no buffers overlap; check all array, pointer
references; any out-of-bounds reference invokes
exception handler
– Meets Implementation Rule 7

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-69

File Contents

• If access control file changes, either:
– File permissions set wrong (Management Rule 2)
– Multiple processes sharing file (Implementation Rule 5)

• Dynamic loading: routines not part of executable,
but loaded from libraries when program needs
them
– Note: these may not be the original routines …

• Implementation Rule 8:
– Do not use components that may change between

the time the program is created and the time it is
run.

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-70

Race Conditions

• Time-of-check-to-time-of-use (TOCTTOU)
problem
– Issue: don’t want file to change after validation but

before access
– UNIX file locking advisory, so can’t depend on it

• How we deal with this:
– Open file, obtaining file descriptor
– Obtain status information using file descriptor
– Validate file access

• UNIX semantics assure this is same as for open file object; no
changing possible

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-71

Improper Naming

• Ambiguity in identifying object
• Names interpreted in context

– Unique objects cannot share names within available
context

– Interchangeable objects can, provided they are truly
interchangeable

• Management Rule 5:
– Unique objects require unique names.

Interchangeable objects may share a name.

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-72

Contexts

• Program must control context of interpretation of
name
– Otherwise, the name may not refer to the expected

object
• Example: loadmodule problem

– Dynamically searched for, loaded library modules
– Executed program ld.so with superuser privileges to do

this
– Default context: use “/bin/ld.so” (system one)
– Could change context to use “/usr/anyone/ld.so” (one

with a Trojan horse)

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-73

Example

• Context includes:
– Character set composing name
– Process, file hierarchies
– Network domains
– Customizations such as search path
– Anything else affecting interpretation of name

• Implementation Rule 9:
– The process must ensure that the context in which

an object is named identifies the correct object.

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-74

Sanitize of Not?

• Replace context with known, safe one on start-up
– Program controls interpretation of names now

• File names (access control file, command
interpreter program)
– Use absolute path names; do not create any

environment variables affecting interpretation
• User, role names

– Assume system properly maintained, so no problems
• Host names

– No domain part means local domain

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-75

Improper Deallocation, Deletion

• Sensitive information can be exposed if object
containing it is reallocated
– Erase data, then deallocate

• Implementation Rule 10:
– When the process finishes using a sensitive object

(one that contains confidential information or one
that should not be altered), the object should be
erased, then deallocated or deleted. Any resources
not needed should also be released.

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-76

Our Program

• Cleartext password for user
– Once hashed, overwritten with random bytes

• Access control information
– Close file descriptor before command interpreter

overlaid
• Because file descriptors can be inherited, and data from

corresponding files read

• Log file
– Close log file before command interpreter overlaid

• Same reasoning, but for writing

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-77

Improper Validation

• Something not checked for consistency or
correctness
– Bounds checking
– Type checking
– Error checking
– Checking for valid, not invalid, data
– Checking input
– Designing for validation

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-78

Bounds Checking

• Indices: off-by-one, signed vs. unsigned
• Pointers: no good way to check bounds

automatically
• Implementation Rule 11:

– Ensure that all array references access existing
elements of the array. If a function that
manipulates arrays cannot ensure that only valid
elements are referenced, do not use that function.
Find one that does, write a new version, or create a
wrapper.

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-79

Our Program

• Use loops that check bounds in our code
• Library functions: understand how they work

– Example: copying strings
• In C, string is sequence of chars followed by NUL byte (byte

containing 0)
• strcpy never checks bounds; too dangerous
• strncpy checks bounds against parameter; danger is not

appending terminal NUL byte
– Example: input user string into buffer

• gets reads, loads until newline encountered
• fgets reads, loads until newline encountered or a specific

number of characters are read

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-80

Type Checking

• Ensure arguments, inputs, and such are of
the right type
– Interpreting floating point as integer, or shorts

as longs
• Implementation Rule 12:

– Check the types of functions and
parameters.

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-81

Compilers

• Most compilers can do this
– Declare functions before use; specify types of

arguments, result so compiler can check
– If compiler can’t do this, usually other programs

can—use them!
• Management Rule 6:

– When compiling programs, ensure that the
compiler flags report inconsistencies in types.
Investigate all such warnings and either fix the
problem or document the warning and why it is
spurious.

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-82

Error Checking

• Always check return values of functions for
errors
– If function fails, and program accepts result as

legitimate, program may act erroneously
• Implementation Rule 13:

– Check all function and procedure
executions for errors.

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-83

Our Program

• Every function call, library call, system call
has return value checked unless return
value doesn’t matter
– In some cases, return value of close doesn’t

matter, as program exits and file is closed
– Here, only true on denial of access or error

• On success, overlay another program, and files
must be closed before that overlay occurs

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-84

Check for Valid Data

• Know what data is valid, and check for it
– Do not check for invalid data unless you are

certain all other data will be valid for as long
as the program is used!

• Implementation Rule 14:
– Check that a variable’s values are valid.

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-85

Example

• Program executed commands in very restrictive
environment
– Only programs from list could be executed

• Scanned commands looking for metacharacters
before passing them to shell for execution
– Old shell: ‘`’ ordinary character
– New shell: ‘`x`’ means “run program x, and replace `x`

with the output of that program
• Result: you could execute any command

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-86

Our Program

• Checks that command being executed matches
authorized command
– Rejects anything else

• Problem: can allow all users except a specific set
to access a role (keyword “not”)
– Added because on one key system, only system

administrators and 1 or 2 trainees
– Used on that system, but recommended against on all

other systems

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-87

Handling Trade-Off

• Decision that weakened security made to improve
useability
– Document it and say why

• Management Rule 7:
– If a trade-off between security and other factors

results in a mechanism or procedure that can
weaken security, document the reasons for the
decision, the possible effects, and the situations in
which the compromise method should be used. This
informs others of the trade-off and the attendant
risks.

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-88

Checking Input

• Check all data from untrusted sources
– Users are untrusted sources

• Implementation Rule 15:
– Check all user input for both form and

content. In particular, check integers for
values that are too big or too small, and
check character data for length and valid
characters.

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-89

Example

• Setting variables while printing
– i contains 2, j contains 21

printf(“%d %d%n %d\n%n”, i, j, &m, i, &n);
stores 4 in m and 7 in n

• Format string attack
– User string input stored in str, then

printf(str)
User enters “log%n”, overwriting some memory
location with 3

• If attacker can figure out where that location is, attacker can
change the value in that memory location to any desired value

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-90

Designing for Validation

• Some validations impossible due to structure of
language or other factors
– Example: in C, test for NULL pointer, but not for valid

pointer (unless “valid” means “NULL”)
• Design, implement data structures in such a way

that they can be validated
• Implementation Rule 16:

– Create data structures and functions in such a way
that they can be validated.

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-91

Access Control Entries

• Syntax of file designed to allow for easy error
detection:
role name

users comma-separated list of users
location comma-separated list of locations
time comma-separated list of times
command command and arguments
…
command command and arguments

endrole

• Performs checks on data as appropriate
– Example: each listed time is a valid time, etc.

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-92

Improper Indivisibility

• Operations that should be indivisible are divisible
– TOCTTOU race conditions, for example
– Exceptions can break single statements/function calls,

etc. into 2 parts as well
• Implementation Rule 17:

– If two operations must be performed sequentially
without an intervening operation, use a mechanism
to ensure that the two cannot be divided.

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-93

Our Program

• Validation, then open, of access control file
– Method 1: do access check on file name, then open it

• Problem: if attacker can write to directory in full path name of
file, attacker can switch files after validation but before
opening

– Method 2 (program uses this): open file, then before
reading from it do access check on file descriptor

• As check is done on open file, and file descriptor cannot be
switched to another file unless closed, this provides protection

– Method 3 (not implemented): do it all in the kernel as
part of the open system call!

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-94

Improper Sequencing

• Operations performed in incorrect order
• Implementation Rule 18:

– Describe the legal sequences of operations
on a resource or object. Check that all
possible sequences of the program(s)
involved match one (or more) legal
sequences.

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-95

Our Program

• Sequence of operations follow proper order:
– User authenticated
– Program checks access
– If allowed:

• New, safe environment set up
• Command executed in it

• When dropping privileges, note ordinary user
cannot change groups, but root can
– Change group to that of role account
– Change user to that of role account

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-96

Improper Choice of
Operand or Operation

• Erroneous selection of operation or operand
• Example: su used to access root account

– Requires user to know root password
– If no password file, cannot validate entered password
– One program assumed no password file if it couldn’t

open it, and gave user root access to fix problem
• Attacker: open all file descriptors possible, spawn su—as open

file descriptors inherited, su couldn’t open any files—not even
password file

• Improper operation: should have checked to see if no
password file or no available file descriptors

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-97

Assurance

• Use assurance techniques
– Document purpose, use of each function
– Check algorithm, call

• Management Rule 8:
– Use software engineering and assurance

techniques (such as documentation, design
reviews, and code reviews) to ensure that
operations and operands are appropriate.

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-98

Our Program

• Granting Access
– Only when entry matches all characteristics of current

session
• When characteristics match, verify access control module

returns true
• Check when module returns true, program grants access and

when module returns false, denies access

• Consider UID (type uid_t, or unsigned integer)
– Check that it can be considered as integer

• If comparing signed and unsigned, then signed converted to
unsigned; check there are no comparisons with negative
numbersr

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-99

Our Program (con’t)

• Consider location
– Check that match routine correctly determines whether

location passed in matches pattern in location field of
access control entries, and module acts appropriately

• Consider time (type time_t)
– Check module interprets time as range
– Example: 9AM means 09:00:00—09:59:59, not

09:00:00
• If interpreted as exactly 9:00:00, almost impossible for user to

hit exact time, effectively disabling the entry; violates
Requirement 4

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-100

Our Program (con’t)

• Signal handlers
– Signal indicates: error in program; or request

from user to terminate
– Signal should terminate program
– If program tries to recover, and continues to

run, and grants access to role account, either it
continued in face of error, or it overrode user’s
attempt to terminate program

• Either way, choice of improper operation

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-101

Summary

• Approach differs from using checklist of common
vulnerabilities

• Approach is design approach
– Apply it at each level of refinement
– Emphasizes documentation, analysis, understanding or

program, interfaces, execution environment
– Documentation will help other analysts, or folks

moving program to new system with different
environment

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-102

Testing

• Informal validation of design, operation of
program
– Goal: show program meets stated requirements
– If requirements drive design, implementation then

testing likely to uncover minor problems
– If requirements ill posed, or change during

development, testing may uncover major problems
• In this case, do not add features to meet requirements!

Redesign and reimplement …

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-103

Process

• Construct environment matching
production environment
– If range of environments, need to test in all

• Usually considerable overlap, so not so bad …
– If repeated failures, check developer

assumptions
• May have embedded information about

development environment—one different than
testing environment!

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-104

Steps

• Begin with requirements
– Appropriate?
– Does it solve the problem?

• Proceed to design
– Decomposition into modules allows testing of each

module, with stubs to take place of uncompleted
modules

• Then to implementation
– Test each module
– Test interfaces (composition of modules)

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-105

Philosophy

• Execute all possible paths of control
– Compare results with expected results

• In practise, infeasible
– Analyze paths, order them in some way

• Order depends on requirements
– Generate test data for each one, check each

• Security testing: also test least commonly used
paths
– Usually not as well checked, so miss vulnerabilities

• First check modules, then check composition

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-106

Testing Module

• Goal: ensure module acts correctly
– If it calls functions, correctly regardless of

what functions return
• Step 1: define “correct behavior”

– Done during refinement, when module
specified

• Step 2: list interfaces to module
– Use this to execute tests

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-107

Types of Tests

• Normal data tests
– Unexceptional data
– Exercise as many paths of control as possible

• Boundary data tests
– Test limits to interfaces
– Example: if string is at most 256 chars, try 255, then

256, then 257 chars
– Example: in our program, try UID of –1 in parameter

list
• Is it rejected or remapped to 231–1 or 216–1?

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-108

Types of Tests (con’t)

• Exception tests
– How module handle interrupts, traps
– Example: send program signal to cause core dump, see

if passwords visible in that file
• Random data tests

– Give module data generated randomly
– Module should fail but restore system to safe state
– Example: in one study of UNIX utilities, 30% crashed

when given random inputs

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-109

Testing Composed Modules

• Consider module that calls other modules
• Error handling tests

– Assume called modules violate specifications
– See if this module violates specification

• Example: logging via mail program
– Program logs connecting host by mail

mail –s hostname netadmin
– Gets host name by mapping IP address using DNS
– DNS has fake record: hi nobody; rm -rf *; true
– When mail command executed, deletes files

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-110

Testing Program

• Testers assemble program, documentation
• New tester follows instructions to install,

configure program and tries it
– This tester should not be associated with other testers,

so can provide independent assessment of
documentation, correctness of instructions

• Problems may be with documentation, installation
program or scripts, or program itself

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-111

Distribution

• Place program, documentation in
repository where only authorized people
can alter it and from where it can be sent to
recipients

• Several factors afftct how this is done

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-112

Factors

• Who can use this program?
– Licensed to organization: tie each copy to the

organization so it cannot be redistributed
• How can availability be ensured?

– Physical means: distribute via CD-ROM, for
example

• Mail, messenger services control availability
– Electronic means: via ftp, web, etc.

• Ensure site is available

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-113

Factors (con’t)

• How to protect integrity of master copy?
– Attacker changing distribution copy can attack

everyone who gets it
– Example: tcp_wrappers altered at repository to

incluse backdoor; 59 hosts compromised when
they downloaded and installed it

– Damages credibility of vendor
– Customers may disbelieve vendors when

warned

November 1, 2004 Introduction to Computer Security
©2004 Matt Bishop

Slide #26-114

Key Points

• Security in programming best done by mimicing
high assurance techniques

• Begin with requirements analysis and validation
• Map requirements to design
• Map design to implementation

– Watch out for common vulnerabilities
• Test thoroughly
• Distribute carefully

