Chapter 27: Lattices

- Overview
- Definitions
- Lattices
- Examples

Introduction to Computer Security ©2004 Matt Bishop

Overview

- Lattices used to analyze Bell-LaPadula, Biba constructions
- Consists of a set and a relation
- Relation must partially order set
 - Partial ordering < orders some, but not all, elements of set

Sets and Relations

- *S* set, *R*: *S* × *S* relation – If $a, b \in S$, and $(a, b) \in R$, write *aRb*
- Example
 - $-I = \{ 1, 2, 3 \}; R \text{ is } \leq$
 - $-R = \{ (1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3) \}$
 - So we write $1 \le 2$ and $3 \le 3$ but not $3 \le 2$

Relation Properties

- Reflexive
 - For all $a \in S$, aRa
 - On I, \leq is reflexive as $1 \leq 1, 2 \leq 2, 3 \leq 3$
- Antisymmetric
 - For all $a, b \in S$, $aRb \land bRa \Rightarrow a = b$
 - − On I, ≤ is antisymmetric
- Transitive
 - For all $a, b, c \in S$, $aRb \land bRc \Rightarrow aRc$
 - On *I*, \leq is transitive as $1 \leq 2$ and $2 \leq 3$ means $1 \leq 3$

Bigger Example

- *C* set of complex numbers
- $a \in C \Rightarrow a = a_R + a_I i$, a_R , a_I integers
- $a \leq_C b$ if, and only if, $a_R \leq b_R$ and $a_I \leq b_I$
- $a \leq_C b$ is reflexive, antisymmetric, transitive - As \leq is over integers, and a_R , a_I are integers

Partial Ordering

- Relation *R* orders some members of set *S*
 - If all ordered, it's total ordering
- Example
 - \leq on integers is total ordering
 - \leq_C is partial ordering on *C* (because neither $3+5i \leq_C 4+2i$ nor $4+2i \leq_C 3+5i$ holds)

Upper Bounds

- For $a, b \in S$, if u in S with aRu, bRu exists, then u is upper bound
 - Least upper if there is no $t \in S$ such that aRt, bRt, and tRu
- Example
 - For 1 + 5i, $2 + 4i \in C$, upper bounds include 2 + 5i, 3 + 8i, and 9 + 100i
 - Least upper bound of those is 2 + 5i

Lower Bounds

- For $a, b \in S$, if *l* in *S* with *lRa*, *lRb* exists, then *l* is lower bound
 - Greatest lower if there is no $t \in S$ such that tRa, tRb, and lRt
- Example
 - For 1 + 5i, $2 + 4i \in C$, lower bounds include 0, -1 + 2i, 1 + 1i, and 1+4i
 - Greatest lower bound of those is 1 + 4i

Introduction to Computer Security ©2004 Matt Bishop

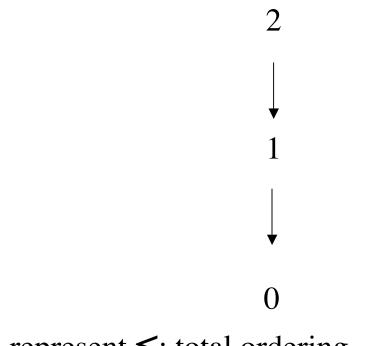
Lattices

- Set *S*, relation *R*
 - *R* is reflexive, antisymmetric, transitive on elements of *S*
 - For every $s, t \in S$, there exists a greatest lower bound under R
 - For every $s, t \in S$, there exists a least upper bound under R

Example

- $S = \{ 0, 1, 2 \}; R = \le \text{ is a lattice}$
 - *R* is clearly reflexive, antisymmetric, transitive on elements of *S*
 - Least upper bound of any two elements of S is the greater
 - Greatest lower bound of any two elements of
 S is the lesser

Picture



Arrows represent \leq ; total ordering

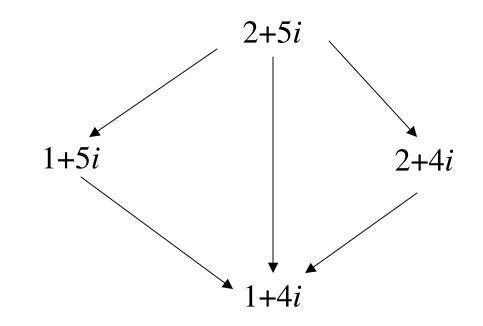
November 1, 2004

Introduction to Computer Security ©2004 Matt Bishop Slide #27-11

Example

- C, \leq_C form a lattice
 - \leq_C is reflexive, antisymmetric, and transitive
 - Shown earlier
 - Least upper bound for *a* and *b*:
 - $c_R = \max(a_R, b_R), c_I = \max(a_I, b_I)$; then $c = c_R + c_I i$
 - Greatest lower bound for *a* and *b*:
 - $c_R = \min(a_R, b_R), c_I = \min(a_I, b_I)$; then $c = c_R + c_I i$

Picture



Arrows represent \leq_C

November 1, 2004

Introduction to Computer Security ©2004 Matt Bishop Slide #27-13