Chapter 28: Euclidean Algorithm

- Euclidean Algorithm
- Extended Euclidean Algorithm
- Solving $ax \mod n = 1$
- Solving $ax \mod n = b$

Overview

- Solving modular equations arises in cryptography
- Euclidean Algorithm
- From Euclid to solving $ax \mod n = 1$
- From $ax \mod n = 1$ to solving $ax \mod n = b$

Euclidean Algorithm

- Given positive integers *a* and *b*, find their greatest common divisor
- Idea
 - if x is the greatest common divisor of a and b, then x divides r = a - b
 - reduces problem to finding largest x that divides r and b
 - iterate

• Take a = 15, b = 12 $a \quad b \quad q \quad r$ $15 \quad 12 \quad 1 \quad 3 \quad q = 15/12 = 1$ $r = 15 - 1 \times 12$ $12 \quad 3 \quad 4 \quad 0 \quad q = 12/3 = 4$ $r = 12 - 4 \times 3$

• so
$$gcd(15, 12) = 3$$

- The b for which r is 0

Computer Security: Art and Science ©2004 Matt Bishop

• Take *a* = 35731, *b* = 25689

a	b	q	r		
35731	24689	1	11042	q = 35731/24689 = 1	
				$r = 35731 - 1 \times 24689$	
24689	11042	2	2,605	q = 24689/11042 = 2	
				$r = 24689 - 2 \times 11042$	
11042	2605	4	622	q = 11042/2605 = 4	
				$r = 11042 - 4 \times 2605$	
2605	622	4	117	$q = 2605/622 = 4; r = 2605-4 \times 622$	
622	117	5	37	$q = 622/117 = 5; r = 622-5 \times 117$	
117	37	3	6	$q = 117/37 = 3; r = 117-3 \times 37$	
37	6	6	1	$q = 37/6 = 6; r = 37-6 \times 6$	
6	1	6	0	$q = 6/1 = 6; r = 6-6 \times 1$	
June 1, 2004Computer Security: Art and ScienceSlide #28-5©2004 Matt Bishop					

Pseudocode

Extended Euclidean Algorithm

• Find two integers *x* and *y* such that xa + yb = 1

• Find x and y such that 51x + 100y = 1

So, 51 × (-49) + 100 × 25 = 1
This is -2499 + 2500 = 1

Computer Security: Art and Science ©2004 Matt Bishop

• Find *x* and *y* such that 24689x + 35731y = 1

и	X	у	q	
35731	0	1		
24689	1	0	35731/24689 = 1	
11042	-1	1	24689/11042 = 2	$u = 35721 - 1 \times 24689; x = 0 - 1 \times 1; y = 1 - 1 \times 0$
2605	3	-2	11042/2,605 = 4	$u = 24689 - 2 \times 11042; x = 1 - 2 \times (-1); y = 0 - 2 \times 1$
622	-13	9	2605/622 = 4	$u = 11042 - 4 \times 2605; x = -1 - 4 \times 3; y = 1 - 4 \times (-2)$
117	55	-38	622/117 = 5	$u = 2605 - 4 \times 622; x = 3 - 4 \times (-13); y = -2 - 4 \times 9$
37	-288	199	117/37 = 3	$u = 622-5 \times 117; x = -13-5 \times 55; y = 9-5 \times (-38)$
6	919	-635	37/6 = 6	$u = 117-3 \times 37$; $x = 55-3 \times (-288)$; $y = -38-3 \times 199$
1	-5802	4,009	6/1=6	$u = 37-6\times6; x = -288-6\times919; y = 199-6\times(-635)$
0	35731-	-24689		$u = 6-6 \times 1; x = 919-6 \times (-5802)$
				$y = -635 - 6 \times (4009)$

• So, $24689 \times (-5802) + 35731 \times 4009 = 1$

June 1, 2004

Computer Security: Art and Science ©2004 Matt Bishop Slide #28-9

Pseudocode

```
/* find x and y such that ax + by = 1, for given a and b */
uprev := a; u := b;
xprev := 0; x := 1; yprev := 1; y := 0;
write 'u = ', uprev, ' x = ', xprev, ' y = ', yprev, endline;
write 'u = ', u, ' x = ', x, ' y = ', y;
while u <> 0 do begin
     q := uprev div u;
     write 'q = ', q, endline;
     utmp := uprev - u * q; uprev := u; u := utmp;
     xtmp := xprev - x * q; xprev := x; x := xtmp;
     ytmp := yprev - y * q; yprev := y; y := ytmp;
     write 'u = ', u, ' x = ', x, ' y = ', y;
end;
write endline;
x := xprev; y := yprev;
June 1, 2004
                     Computer Security: Art and Science
                                                          Slide #28-10
```

©2004 Matt Bishop

Solving $ax \mod n = 1$

- If $ax \mod n = 1$ then choose k such that ax = 1 + kn, or ax - kn = 1. If b = -k, then ax + bn = 1.
- Use extended Euclidean algorithm to solve for *a*

- Solve for $x: 51x \mod 100 = 1$
 - Recall (from earlier example) $51 \times (-49) + 100 \times 25 = 1$ Then $x = -49 \mod 100 = 51$
- Solve for *x*: 24689 mod 35731 = 1
 - Recall (from earlier example) $24689 \times (-5802) + 35731 \times 4009 = 1$ Then $x = -5802 \mod 35731 = 29929$

Solving $ax \mod n = b$

A fundamental law of modular arithmetic: xy mod n = (x mod n)(y mod n) mod n so if x solves ax mod n = 1, then as b(ax mod n) = a(bx) mod n = b bx solves ax mod n = b

- Solve for x: $51x \mod 100 = 10$
 - Recall (from earlier example) that if $51y \mod 100 = 1$, then y = 51. Then $x = 10 \times 51 \mod 100 = 510 \mod 100 = 10$
- Solve for *x*: 24689 mod 35731 = 1753
 - Recall (from earlier example) that if
 24689y mod 35731 = 1, then y = 29929.
 Then x = 1753 × 29929 mod 35731 = 12429