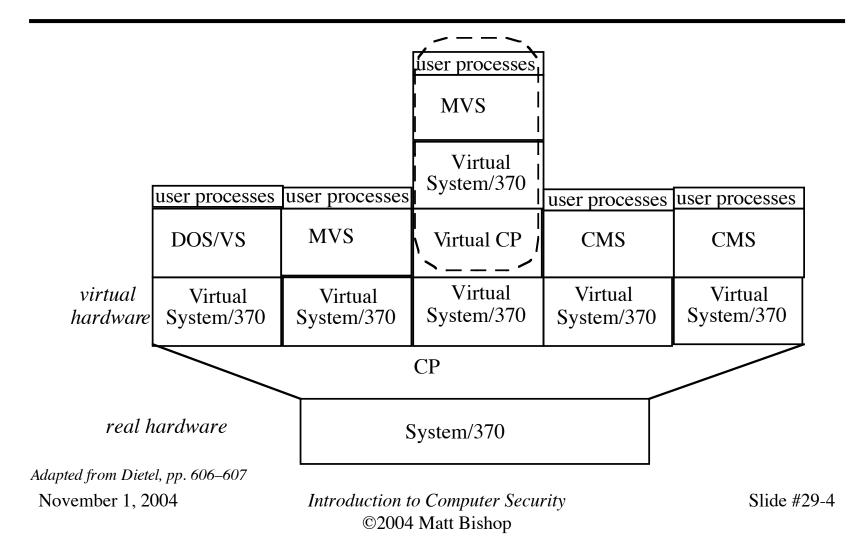
Chapter 33: Virtual Machines

- Virtual Machine Structure
- Virtual Machine Monitor

Overview

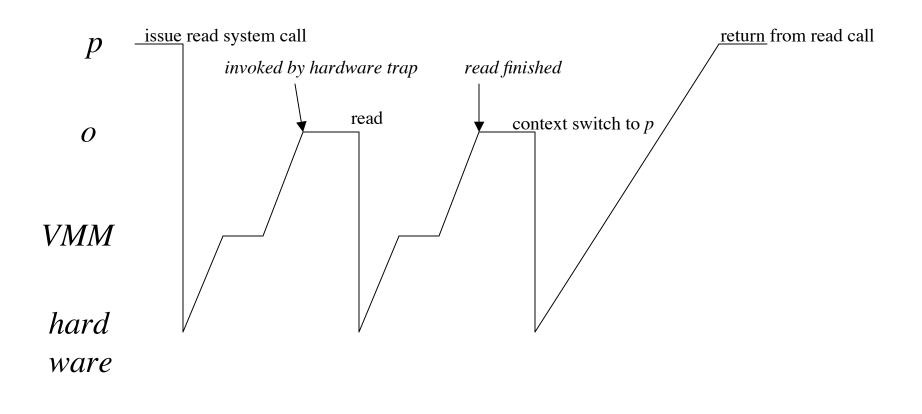

- Virtual Machine Structure
- Virtual Machine Monitor
 - Privilege
 - Physical Resources
 - Paging

What Is It?

- *Virtual machine monitor* (VMM) virtualizes system resources
 - Runs directly on hardware
 - Provides interface to give each program running on it the illusion that it is the only process on the system and is running directly on hardware
 - Provides illusion of contiguous memory beginning at address 0, a CPU, and secondary storage to *each* program

November 1, 2004

Example: IBM VM/370


Privileged Instructions

- 1. VMM running operating system *o*, which is running process *p*
 - *p* tries to read—privileged operation traps to hardware
- 2. VMM invoked, determines trap occurred in *o*
 - VMM updates state of *o* to make it look like hardware invoked *o* directly, so *o* tries to read, causing trap
- 3. VMM does read
 - Updates *o* to make it seem like *o* did read
 - Transfers control to *o*

Privileged Instructions

- 4. *o* tries to switch context to *p*, causing trap
- 5. VMM updates virtual machine of *o* to make it appear *o* did context switch successfully
 - Transfers control to *o*, which (as *o* apparently did a context switch to *p*) has the effect of returning control to *p*

Privileged Instructions

Privilege and VMs

- *Sensitive instruction* discloses or alters state of processor privilege
- *Sensitive data structure* contains information about state of processor privilege

When Is VM Possible?

- Can virtualize an architecture when:
 - 1. All sensitive instructions cause traps when executed by processes at lower levels of privilege
 - 2. All references to sensitive data structures cause traps when executed by processes at lower levels of privilege

Example: VAX System

- 4 levels of privilege (user, supervisor, executive, kernel)
 - CHMK changes privilege to kernel level; sensitive instruction
 - Causes trap *except* when executed in kernel mode; meets rule 1
 - Page tables have copy of PSL, containing privilege level; sensitive data structure
 - If user level processes prevented from altering page tables, trying to do so will cause a trap; this meets rule 2

Multiple Levels of Privilege

- Hardware supports *n* levels of privilege
 - VM must also support *n* levels
 - VM monitor runs at highest level, so n–1 levels of privilege left!
- Solution: virtualize levels of privilege
 - Called ring compression

Example: VAX VMM System

- VMM at kernel level
- VMM maps virtual kernel and executive level to (real) executive mode
 - Called VM kernel level, VM executive level
 - Virtual machine bit added to PSL
 - If set, current process running on VM
 - Special register, VMPSL, records PSL of currently running VM
 - All sensitive instructions that *could* reveal level of privilege get this information from VMPSL or trap to the VMM, which then emulates the instruction

November 1, 2004

Introduction to Computer Security ©2004 Matt Bishop Slide #29-12

Alternate Approach

- Divide users into different classes
- Control access to system by limiting access of each class

Example: IBM VM/370

- Each control program command associated with user privilege classes
 - "G" (general user) class can start a VM
 - "A" (primary system operator) class can control accounting, VM availability, other system resources
 - "Any" class can gain or surrender access to VM

Physical Resources and VMs

- Distributes resources among VMs as appropriate
 - Each VM appears to have reduced amount of resources from real system
 - Example: VMM to create 10 VMs means real disk split into 10 minidisks
 - Minidisks may have different sizes
 - VMM does mapping between minidisk addresses, real disk addresses

Example: Disk I/O

- VM's OS tries to write to disk
 - I/O instruction privileged, traps to VMM
- VMM checks request, services it
 - Translates addresses involved
 - Verifies I/O references disk space allocated to that VM
 - Services request
- VMM returns control to VM when appropriate
 - If I/O synchronous, when service complete
 - If I/O asynchronous, when service begun

Paging and VMs

- Like ordinary disk I/O, but 2 problems
 - Some pages may be available only at highest level of privilege
 - VM must remap level of privilege of these pages
 - Performance issues
 - VMM paging its own pages is transparent to VMs
 - VM paging is handled by VMM; if VM's OS does lots of paging, this may introduce significant delays

Example: VAX/VMS

- On VAX/VMS, only kernel level processes can read some pages
 - What happens if process at VM kernel level needs to read such a page?
 - Fails, as VM kernel level is at real executive level
 - VMM reduces level of page to executive, then it works
 - Note: security risk!
 - In practice, OK, as VMS allows executive level processes to change to kernel level

November 1, 2004

Example: IBM VM/370

- Supports several different operating systems
 - OS/MFT, OS/MVT designed to access disk storage
 - If jobs being run under those systems depend on timings, delay caused by VM may affect success of job
 - If system supports virtual paging (like MVS), either MVS or VMM may cause paging
 - The VMM paging may introduce overhead (delays) that cause programs to fail that would not were the programs run directly on the hardware