Outline for June 1, 2009

Reading: text, §13.3 Guest Lecturer: Justin Cummins

- 1. Recursive refresher: Fibonacci sequence
- 2. Merge function
 - a. Merges two sorted lists into a third sorted list
 - i. Compare first item of each list
 - ii. Return the smaller value concatenated with the merge of the two lists (minus the smaller value)
 - iii. If one list is empty, the result is the other list (terminating case/condition)
 - b. Linear time $\mathcal{O}(n)$: each compare places one item into the result, where the result has n items
- 3. Mergesort function (see mergesort.py)
 - a. One of the fastest general-purpose sorts
 - b. Divide and Conquer algorithm
 - c. Parallelizes easily
 - d. Python's list sort is a modified mergesort
 - e. Algorithm
 - i. Divide list in half
 - ii. Recursively sort each half
 - iii. Merge the sorted parts together
 - iv. If a list has 0 or 1 element, it's already sorted (terminating case/condition)
 - f. Example: Mergesort class volunteers by height
 - g. $\mathcal{O}(n \log n)$ algorithm in worst case and average case
- 4. Compare mergesort to selection sort on random list of integers
 - a. Selection sort is a quadratic, $\mathcal{O}(n^2)$, algorithm
 - b. For 10 and 100 elements, selection sort slightly faster
 - c. For 1000 elements, mergesort almost 10× faster
 - d. For 10000 elements, mergesort over 100× faster