
1

The different ways of
for …

  Iterating through a list can
be done in different ways

  Simple is usually better
  … but you should

understand "strange"
constructs, too …

1

Sequences: Lists and Strings
  finite sequence of elements/objects: o, o, o, …, o
  Example: Strings

  S = "Hello World! FOO BAR"

  Access elements of sequence via an index
  0, 1, 2, …, N-1 where N is the length of the sequence
  S[0] first element of sequence (here: string) S has index 0

  S[1] second element has index 1
  S[i] (i+1)-st element of S has index i

H e l l o W o r l d ! F O O B A R

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

2

Slicing sequences …
  if S is a sequence (string, list)…

  …we can do S[start : end]

  yielding the slice from index start
to end-1 !

  can also start from the back of
the sequence: [-1], [-2], …

  defaults:
  for start: 0 S[:3]

  for end: len(S) S[1:]

3

… and more operations on strings and lists
  String concatenation:

  S3 = S1 + S2
  "Hi " + "there!"  "Hi there!"

  String indexing:
  S[i]
  "foobar"[3]  "b"

  String slicing:
  S[m : n]

  String length:
  len(S)

  Iterating over:
  for x in S:

  Initialization:
  S = "" L = []

  Testing membership (new!)
  e in X  True/False

  Others (on strings!):
  .split(..), .upper(), … 4

