
Processing Data from Files

n  So far:
n  Inputs:

n … from user
n … "hard-wired" into program

n  Outputs:
n … "printing" on the screen

n  In practice, usually:
n  Input from file

n  Output to file

1

Python Programming, 2/e 2

File Processing

n  The process of opening a file involves
associating a file on disk with an object in
memory.

n  We can manipulate the file by manipulating this
object.
n  Read from the file
n  Write to the file

Python Programming, 2/e 3

File Processing

n  When done with the file, it needs to be closed.
Closing the file causes any outstanding
operations and other bookkeeping for the file to
be completed.

n  In some cases, not properly closing a file could
result in data loss.

Python Programming, 2/e 4

File Processing

n  Reading a file into a word processor
n  File opened
n  Contents read into RAM
n  File closed
n  Changes to the file are made to the copy stored in

memory, not on the disk.
n Aside: who uses Dropbox?
è interesting issues with access control (easy to “shoot
yourself in the foot”, when multiple users edit same file)

Python Programming, 2/e 5

File Processing

n  Saving a word processing file
n  The original file on the disk is reopened in a mode

that will allow writing (this actually erases the old
contents)

n  File writing operations copy the version of the
document in memory to the disk

n  The file is closed

Python Programming, 2/e 6

File Processing

n  Working with text files in Python
n  Associate a disk file with a file object using the open

function
<filevar> = open(<name>, <mode>)

n  Name is a string with the actual file name on the
disk. The mode is either ‘r’ or ‘w’ depending on
whether we are reading or writing the file.

n  MyInfile = open("numbers.dat", "r")

Python Programming, 2/e 7

File Methods

n  <file>.read() – returns the entire remaining contents
of the file as a single (possibly large, multi-line) string

n  <file>.readline() – returns the next line of the file.
This is all text up to and including the next newline
character

n  <file>.readlines() – returns a list of the remaining
lines in the file. Each list item is a single line including
the newline characters.

Python Programming, 2/e 8

File Processing

n  Another way to loop through the contents of a
file is to read it in with readlines and then loop
through the resulting list:

n  MyInfile = open(someFile, "r")
for line in MyInfile.readlines():

 # Line processing here
MyInfile.close()

Python Programming, 2/e 9

File Processing

n  Python treats the file itself as a sequence of lines
Very convenient!

n  MyInfile = open(someFile, "r")
for line in MyInfile:

 # process the line here
MyInfile.close()

n  Bottom line:
n  Processing a text file, line by line?? Use a for loop!

Python Programming, 2/e 10

File Processing
n  Opening a file for writing prepares the file to receive data
n  If you open an existing file for writing, you wipe out the

file’s old contents. If the named file does not exist, a new
one is created.

n  Outfile = open("mydata.out", "w")
n  print(<expressions>, file=Outfile)

n  Alternative (and main option in Python 2):
n  Outfile.write(…)

n  This is very convenient (better than in Python 2!):
1.  Develop code with print(..) statements
2.  When all works, add "file = Outfile" (and all what goes with it) to

the program!

Python Programming, 2/e 11

File Processing

File Processing: Examples

12

From Reading to Writing Files …

13

File Processing:
Read an input file,

write two output files

14

… two files are generated:

15

