
 

O

 

U T L I N E

 

 

 

F O R

 

 M

 

A Y

 

 2 9 ,  2 0 0 2 E C S  3 0 - A  —  S

 

P R I N G

 

 2 0 0 2

Version of May 30, 2002 10:37 pm Page 1 of 2

 

Outline for May 29, 2002

 

Handouts

 

:

 

Homework 5

 

Reading

 

: Johnsonbaugh and Kalin, pp.  679–702 (appendix of useful functions)

1. Greetings and felicitations!

2. Standard I/O Library (#include <stdio.h>)
a. open file: fopen
b. unstructured read/write: getchar, fgetc (getc), putchar, fputc (putc)
c. formatted read/write: fgets (gets), fscanf, fputs (puts), fprintf
d. structured read/write: fread, fwrite
e. random access: fseek, ftell, rewind
f. close file: fclose
g. miscellaneous: feof, ferror, clearerr

3. Character types and conversions (#include <ctype.h>)
a. alphabetics, numerics, alphanumerics: isalnum, ialdigit, isxdigit, isalpha
b. upper, lower, and conversions: isupper, islower, toupper, tolower
c. types of chars: iscntrl, isgraph (not blank, printable), isprint (printable), ispunct, isspace

4. String conversion (#include <stdlib.h>)
a. string to number: atoi, atof, atol

5. String functions (#include <string.h>)
a. compare: strcmp, strncmp, strcasecmp, strncasecmp; memcmp
b. copy: strcpy, strncpy; memcpy (no overlap), memmove (overlap okay)
c. find character: strchr (index), strrchr (rindex), strpbrk; memchr
d. length: strlen

6. Memory  management (#include <stdlib.h>
a. Allocation: malloc, calloc
b. Release: free, cfree (deprecated)
c. Reallocation: realloc()

7. Miscellaneous
a. terminate program (exit); include <stdlib.h>
b. sort array of data (qsort); include <stdlib.h>
c. time of day (time, ctime); include <time.h>
d. execute cvommand (system); include <stdlib.h>

8. Debugging
a. programs have bugs; find and fix them
b. static debugging: insert debugging code into source, recompile and run
c. dynamic debugging: look at the program as it runs, observing (and maybe changing) variables, etc.

9. Static debugging 
a. using printf to print variable values; mention %p (prints pointer value, usually as a hex integer)
b. using printf to print where you are (ie, on function entry printf(“in function\n”);
c. #ifdef DEBUG … #endif around the printfs so you can leave them in the source if you need them again



 

O

 

U T L I N E

 

 

 

F O R

 

 M

 

A Y

 

 2 9 ,  2 0 0 2 E C S  3 0 - A  —  S

 

P R I N G

 

 2 0 0 2

Version of May 30, 2002 10:37 pm Page 2 of 2

d. assert(x) macro: assert(0 <= i && i <= n) causes program to exit with error message if (0 <= I && I <= n) is 
false; must include <assert.h>.  To delete, say #define NDEBUG and they will not be in the compiled code.

10. Dynamic debugging
a. debugging tool instruments executable program so it can be stopped, examined, altered, and continued inter-

actively
b. go through the handout
c. mention the “where” command which shows you the program stack


