

O

U T L I N E

F O R

 M

A Y

 3 1 , 2 0 0 2 E C S 3 0 - A — S

P R I N G

 2 0 0 2

Version of May 30, 2002 10:35 pm Page 1 of 1

Outline for May 31, 2002

Handouts

:

The Dynamic Debbugger gdb

Reading

: Johnsonbaugh and Kalin, pp. 679–702 (appendix of useful functions)

1. Greetings and felicitations!

2. Miscellaneous
a. terminate program (exit); include <stdlib.h>
b. sort array of data (qsort); include <stdlib.h>
c. time of day (time, ctime); include <time.h>
d. execute cvommand (system); include <stdlib.h>

3. Debugging
a. programs have bugs; find and fix them
b. static debugging: insert debugging code into source, recompile and run
c. dynamic debugging: look at the program as it runs, observing (and maybe changing) variables, etc.

4. Static debugging
a. using printf to print variable values; mention %p (prints pointer value, usually as a hex integer)
b. using printf to print where you are (ie, on function entry printf(“in function\n”);
c. #ifdef DEBUG … #endif around the printfs so you can leave them in the source if you need them again
d. assert(x) macro: assert(0 <= i && i <= n) causes program to exit with error message if (0 <= I && I <= n) is

false; must include <assert.h>. To delete, say #define NDEBUG and they will not be in the compiled code.

5. Dynamic debugging
a. debugging tool instruments executable program so it can be stopped, examined, altered, and continued inter-

actively
b. go through the handout
c. mention the “where” command which shows you the program stack

