
ECS 150 (Operating Systems) Deadlock

Spring Quarter 1999 1

DD ee aa dd ll oo cc kk

Goal
To examine what causes deadlock, and what to do about it.

ECS 150 (Operating Systems) Deadlock

Spring Quarter 1999 2

Deadlock

The resource manager is that part of the kernel responsible for
managing resources. Its process interface has two functions:
• request: asks that a process be given a resource; and
• release: informs the resource manager that the process no longer

needs a resource it has been allocated.
example: A system has two tape drives s and t; processes p and q
will each need both. The following occurs:

p requests tape drive s; the resource manager allocates it
q requests tape drive t; the resource manager allocates it
p requests tape drive t; the resource manager blocks p until that

drive becomes available
qrequests tape drive s; the resource manager blocks q until that

drive becomes available
Now p and q are deadlocked (cite Kansas train crossing law here)

Deadlock vs. starvation:
deadlock occurs when a needed resource is never available for

reassignment.
starvation occurs when a needed resource is available for

reassignment but is never assigned to the process requesting
i t

example: forks in the dining philosophers problem.

Approaches to the problem
There are three main approaches:
• liberal: Whenever possible, grant the request; if it cannot be

granted, block the requestor until it can.
• conservative: Be willing to deny an available resource on

occasion to prevent deadlock.
• serialization: processes cannot hold resources concurrently; so if

one process requests and is granted a resource, no other process
can acquire another resource.
example: in the earlier example, q 's request for t would have been
denied.

ECS 150 (Operating Systems) Deadlock

Spring Quarter 1999 3

Resource types

• Reusable (also called serially reusuable) resources have a fixed
total inventory: none are created, and none destroyed. Units are
requested and acquired from a pool of available units and after
use are returned to the pool where other processes can get them.
examples: processors, memory, tape drives, etc.

• Consumable resources have no fixed number of units, but are
created (produced) or acquired (consumed) as needed. An
unblocked producer may release any number of units which
become immediately available; once acquired, units cease to
exist.
examples: messages, information in I/O buffers, etc.
We will not discuss deadlock analysis of consumable
resources.

ECS 150 (Operating Systems) Deadlock

Spring Quarter 1999 4

How to Deal with Deadlock (Policies)

(1) Ignore it (Tanenbaum calls this the “ostrich approach”): used by
UNIX; okay if deadlocks rare and users know how to recover.

(2) detection and recovery: determine when the system is
deadlocked, and recover; okay if deadlocks are infrequent and
cost of recovery is low;

(3) prevention: ensure deadlock can never occur; if granting a
request could cause deadlock later on, deny the request. This
means ensuring one of the following four conditions fails (all
must hold for deadlock to occur):
• mutual exclusion: when a process is using a resource, no

other process can use it.
• no preemption: resources will not be taken from a process

holding them.
• circular wait or resource waiting: blocked processes form a

circular chain, with each holding a resource requested by
another member of the chain and requesting a resource held
by another member of the chain.

• hold and wait or partial allocation: a process may hold
resources while requesting others.

This policy degrades utilization of resources, but is acceptable
if deadlocks are unacceptable.

(4) avoidance: use knowledge of the process' future behavior to
constrain the pattern of resource allocation.

ECS 150 (Operating Systems) Deadlock

Spring Quarter 1999 5

Deadlock Prevention

These schemes use the idea that, as a safe state is one that can
never lead to deadlock, the system should be restricted so that all
states are safe. Typical designs:
(1) only 1 process at a time may hold resources, which leads to a

single-programming environment;
(2) each process must request and acquire all the resources it may

need at one time. But this means that things may be requested
unnecessarily, or allocated long before used.

(3) resources are ordered, and constraints are placed upon
requesting resources in different classes of the ordering (this
is called hierarchical ordering or an ordered resource policy):
• divide resources into k classes; a process can request

allocations from class Ki if and only if it f has no allocations
from classes Ki+1, …, Kk.

As with (2), some resources must be allocated in advance of
their need.

ECS 150 (Operating Systems) Deadlock

Spring Quarter 1999 7

Deadlock Avoidance

Banker's Algorithm
This determines if the system is in a safe or unsafe state by

trying to finish.
example: There are 10 resource units and 3 processes. P wants to
acquire another resource unit. If the request is granted, the
following will be the state:

P has 4 units and needs 4 more
Q has 2 units and needs 1 more
R has 2 units and needs 7 more

2 units are available
(1) satisfy Q:
P has 4 units and needs 4 more
R has 2 units and needs 7 more

4 units are available
(2) satisfy P:
R has 2 units and needs 7 more

8 units are available
(3) satisfy R; all processes finish.

Therefore the initial state is safe and the request can be granted.
example: Same request, but if granted the state would be:

P has 4 units and needs 4 more
Q has 2 units and needs 1 more
R has 3 units and needs 6 more

1 unit is available
(1) satisfy Q:
P has 4 units and needs 4 more
R has 2 units and needs 7 more

3 units are available
P and R cannot finish, therefore the initial state is unsafe. The
request will be denied.
Problems: Five big ones:
(1) the Banker's algorithm requires a fixed number of resources

If something goes off line for repair or maintenance, the system
may be put into an unsafe state without any action by the
processes;

(2) the Banker's algorithm requires a fixed number of processes
This is unreasonable, especially in time sharing systems.

(3) the Banker's algorithm guarantees all requests will be granted
in a finite time

ECS 150 (Operating Systems) Deadlock

Spring Quarter 1999 8

But printing your program (due today) next year grants your
request in a finite time. You need a better guarantee than that!

(4) the Banker's algorithm requires jobs to release their resources
in a finite time
Suppose a process grabs a resource and then blocks indefinitely,
waiting for an external event to occur. Again, you need a better
guarantee that that!

(5) the Banker's algorithm requires users to know and state process
needs in advance.

