
ECS 150 (Operating Systems) File Systems

Spring Quarter 1999 1

FF ii ll ee SS yy ss tt ee mm ss

Goal
To learn how files are represented both in memory and on the

secondary storage devices.

ECS 150 (Operating Systems) File Systems

Spring Quarter 1999 2

File Systems

A file is a collection of data. There are two aspects of it:
• virtual: this is how the user (process) sees the file
• physical: this is how the file is represented to the hardware and

operating system.
A file's name often reflects something about the file.
example: in TOPS-20, file names are name.ext, where ext is a three-
character extension describing the file; “bas” for BASIC, “for” for
FORTRAN, “bli” for BLISS, “obj” for object, “exe” for executable,
“txt” for text, and so forth. On UNIX™ and MINIX, the last letter may
designate something; for example, C source files end in “.c” and
PASCAL source files in “.p”.

ECS 150 (Operating Systems) File Systems

Spring Quarter 1999 3

Di rec tor ies

Files can be organized into directories (“folders” to the Mac) to
make organizing them easier. A directory contains pairs of

(name, location)
The location may be a physical location (disk address) or an index
into an array containing those locations or any other datum used to
locate files. There are several main types of directory
organizations; in historical order, they are:
• a one-level (flat) directory in which all files are in the same,

single directory.
• no two files can have the same name (so to keep users having

to worry about collisions, the system could make the user
name a component of each file name)

• to find a file, one must search the whole directory
• hierarchical directories impose a tree structure on directories;

typically there is a master directory, and then user directories
for each user.
• do absolute and relative path names, current working name.

• graph-structured directory systems are basically hierarchical
systems, but with the ability to alias files.
• direct aliasing occurs when one (file) location appears twice

(or more) in directories, often with different names.
 • indirectaliasing occurs when a special type of file containing a

path name is created; it is said to be an indirect alias for the
file it names. When you refer to the indirect alias, the
operating system interpolates the name of the file being
aliased.
issues:
• naming: there is no such thing as a "true" name now
• deletion: If a file is deleted under one alias, is it

inaccessible using the other aliases?
yes: must find all other aliases and delete them; expensive
no : don't delete file until all aliases deleted; use a l ink

count to track how many aliases a file has.
• accounting: usually, the owner of a file pays for storage

(and other related charges), but if another user aliases to
the file, the owner might no longer be able to delete all
references to it!
solution: have each person owning a link to the file (ie.,
owning a directory containing a link to the file) pay a
percentage of the cost of the file.

ECS 150 (Operating Systems) File Systems

Spring Quarter 1999 4

Information kept in a directory (or indicated by it) is the name,
file type, etc .
example: UNIX handout; note the difference between in-core
representation and representation of information on disk.

ECS 150 (Operating Systems) File Systems

Spring Quarter 1999 5

Access Control

Typical protection modes are: read, write, append, delete,
privilege (allows modification of others' rights), owner (indicates
owner of file), and search (grants permission to search directory).
example: UNIX; note difference in meaning of execute for files and
directories.
implementation: describe access lists, abbreviation
association of rights: are privileges associated with a name or a
file? That is, if x is an alias for y, can a user have read permission
on x but not
on y?

ECS 150 (Operating Systems) File Systems

Spring Quarter 1999 6

Process View of File

Processes operate on files using the following commands:
• create: find space for the file, allocate it, and make an entry in

the directory
• open: begin operations on a file
• close: end operations on a file
• read : transfer information from the file
• write : transfer information to the file
• rewind: move to the beginning (or a random point) in the file
• delete: remove the file

ECS 150 (Operating Systems) File Systems

Spring Quarter 1999 7

Access Methods

How can processes access files?
• sequential: one block after the other. The process keeps track of

a read/write pointer (part of the PCB) indicating where the next
action is to be done; the pointer always advances.

• direct: the read/write pointer can move freely.
• mapped: map the file into a virtual segment, and return the

segment number rather than the file descriptor; then treat thr
file as part of the process' virtual store. On closing, just release
the storage.
example: TOPS-20, MULTICS

• structured: the file consists of a sequence of records; often the
operating system knows about the file type.
example: ISAM (Indexed Sequential Access Method). In this, a
small master index points to blocks in a secondary index, which
in turn point to real file blocks. Thus, it takes at most 2 reads to
locate any record

ECS 150 (Operating Systems) File Systems

Spring Quarter 1999 8

Information in disk directory file

A disk directory is like a directory for a disk; it describes what
blocks are in use and which are free. This means it must keep track
of what blocks are not in use; such a list is a free list. Several
representations:
• a bit map, with 1 bit per block
• a linked list of blocks
• like linked list, but in each block of size n on the free list, store

n-1 numbers of free blocks; the n-th is the address of the next
block making up the list

• pairs of (block number, number of free blocks from that block on);
if there is more than one contiguous block free, this usually saves
same space

The latter three are often called file maps because each free block
is represented by 1 word (pointer).

ECS 150 (Operating Systems) File Systems

Spring Quarter 1999 9

Allocation of Disk Blocks to Files

This is done in one of three ways:
• contiguous allocation: here, blocks are allocated sequentially

(contiguously)
advantages:
• minimal head motion for sequential reading of file
problems
• need to find space for it (using the usual algorithms: first-fit,

best-fit, …). Compaction is possible but usually requires
copying almost everything on the disk

• how much space should be allocated for the file? It might
grow beyond its initial allocation.
• there may be room to increase the allocation;
• the program may be terminated; in this case, people tend to

ask for as much room as possible (wasting space)
• the file may be moved elsewhere (very slow)
Note that files may grow for years, so even if you know the
maximum size a file will ever get, you may waste lots of
space for a long time.

• linked allocation: the directory contains pointers to the first and
last blocks of the file, and the last n bytes of each block in the
file point to the next block in the file.
advantages:
• this scheme eliminates the need to know the size of files in

advance
• again, it is great for files accessed sequentially
disadvantages:
• it is poor for direct access files as the operating system must

follow links to get to the desired block.
• it wastes n bytes of disk space per block
• it is unreliable: if 1 pointer is deleted or changed, the file is

garbled; a doubly-linked list, which would ameliorate this,
uses more memory.

• indexed allocation: this scheme brings all pointers together into
one block.
advantages:
• compact and easy to reference blocks
disadvantages:
• wastes more space as an entire block is pointers rather than

just 1 word per block (so a 511 block file and a 2 block file
use the same number of pointers)

ECS 150 (Operating Systems) File Systems

Spring Quarter 1999 1 0

implementation issue If you need more than 1 index block, link
them together. Or, use indirection: if you can have 256
pointers/block, 2 levels of indirection allows 2562 = 65,536
blocks.
example: UNIX scheme: the first 12 blocks of a file are data, the
13th is an index block, the 14th is a doubly-indexed block (ie, it
contains pointers to index blocks), and the 15th is a triply-
indexed block (ie, it contains pointers to doubly-indexed blocks)

