
ECS 150 (Operating Systems) Computer Security

Spring Quarter 1999 1

CC oo mm pp uu tt ee rr SS ee cc uu rr ii tt yy

Goal
To learn the basics of how data on computers is protected.

ECS 150 (Operating Systems) Computer Security

Spring Quarter 1999 2

Security and Protection

Goals: confidentiality, integrity, availability
Requirements vary from site to site; describe:
• Orange book (DoD Trusted Computer System Evaluation Criteria)
• Red Book (DoD Trusted Network Interpretation of the TCSEC)
• Privacy Act
all of which constrain policies at different sites

Discuss policy vs. mechanism.
Our job: design mechanisms that will allow these goals to be
accomplished, or think about why such mechanisms are infeasible

ECS 150 (Operating Systems) Computer Security

Spring Quarter 1999 3

Saltzer's and Schroeder's Design Principles

Following these is central to any secure architecture
• Economy of Mechanism: the protection mechanism should have a

simple and small design.
• Fail-safe Defaults: the protection mechanism should deny access

by default, and grant access only when explicit permission exists.
• Complete Mediation: the protection mechanism should check every

access to every object.
• Open Design: the protection mechanism should not depend on

attackers being ignorant of its design to succeed. It may however
be based on the attacker's ignorance of specific information such
as passwords or cipher keys.

• Separation of Privilege: the protection mechanism should grant
access based on more than one piece of information.

• Least Privilege: the protection mechanism should force every
process to operate with the minimum privileges needed to
perform its task.

• Least Common Mechanism: the protection mechanism should be
shared as little as possible among users.

• Psychological Acceptability: the protection mechanism should be
easy to use (at least as easy as not using it).

ECS 150 (Operating Systems) Computer Security

Spring Quarter 1999 4

Issues

Physical security covers access to the computer and associated
equipment; controlled by badges, etc.

Operational security covers polcies and procedures used to run
the system, and includes:

• access control: who can do what to each object
subjects: actors
objects: either passive entities or any entity (subjects too)
protection domain: what objects a subject can access, and
how.
The basic structure is an access control matrix :

objects

s
u

b
je

c
ts

C -L is t

A
C

L

Access control lists (ACLS)
are the columns of the access
control matrix.
Capability lists (C-Lists)
are the rows of the access
control matrix

ACLs go down; C-lists across.
Discuss capabilities:
• the main difference is a capability is thought of as the only

means to refer to an object
• capability-based addressing: although we've talked about C-

lists being for secondary storage (files, etc.) they are also
used in main memory. Compare capability lists to segment
tables:
• both consist of pointers and rights
• difference: entries in a segment table point to in-core

structures (segments), but entries in a c-list point to
secondary storage .

So combine them: use capabilities for both in-core and
secondary storage objects. That is, associate a unique
capability with any object, regardless of where it is in
system; the same one is used by the file manager and the
memory manager.

ECS 150 (Operating Systems) Computer Security

Spring Quarter 1999 5

global object table enables this. Each entry in the table
points to exactly 1 object regardless of where it is; if the
object moves, the table is updated. A capability is an index
into this table, augmented with a set of rights.
problem: must prevent users from creating capabilities.
This is done in one of two ways:

(1) store the capability in segments which the user's
can't access

(2) use a tagged architecture in which each main store
location has a tag bit; if the tag bit is set, only
system routines can minipulate that location. So put
the capability there.

example: MULTICS implements access control using access
control lists in a dynamic linking environment based upon
concentric protection rings:

nucleus
administrat ion
system
users

0 1 2 3 …

Each segment is assigned to a ring; the assignment is fixed,
and is part of the entry in the file/directory for each segment
{in practice, there is actually a bracket}

A process can only access going out; ie, if a process
executing in segment S in ring i tries to access segment T in
ring j, the access is allowed if:

(1) j ≥ i; and
(2) ACL for T allows the access

If i > j, an interrupt occurs, and control is passed to the
system routine to verify the validity of the access.

ECS 150 (Operating Systems) Computer Security

Spring Quarter 1999 6

Note even if a process is going out, it must copy arguments,
addresses of variables in ring i, etc.; these copies must be put
into an area accessible to T. This means …
problem: objects must be linearly ordered
example : with capabilities, this is not true:

process p

P1

P2

Q

ring #

5

2 0

7 p r

… …
… …

ACL for Q

Here, p can access Q
if Q is called from
segment P1, but not
from segment P2..

process p

P1

P2

Q

Q r

… …
… …

C-List for P1

Here, p can access Q
if Q is called from
segment P1, but not
from segment P2..

C-List for P2

Other interesting note: with capabilities, you do not need
privileged hardware states. Just take an object-oriented
approach: to do something, you need an object (thing to be
manipulated) and an operation. The object is of a certain type.
example: consider scheduling and dispatching (should only be
done by the kernel). So, “scheduling” and “dispatching” are
operations defined for process objects, and undefined for all
other objects.
 Just make sure that no user gets capabilities for the objects
which are of the types on which privileged operations work.
problem: Why are capabilities not used more often? Too
expensive, and such systems execute more slowly

• logging actions and examining system state (logging and
auditing)
• good mechanism for detecting (potential) problems
• useful with IDES and other surveillance programs;
requires …

• verification of user identity (user authentication)
• passwords, keys, and/or biometrics
• limits on number of attempts to log in
leading to …

• keeping data private (confidentiality)

ECS 150 (Operating Systems) Computer Security

Spring Quarter 1999 7

• keeping data unaltered (integrity)

ECS 150 (Operating Systems) Computer Security

Spring Quarter 1999 8

Cryptography

Used as a tool to augment (or replace) other security mechanisms,
or where other security mechanisms infeasible (ie, packet radio
networks). Two goals:

Privacy is protection against disclosure.
Authentication is assurance of identity.

Typical uses are to provide privacy to personal or proprietary
information, and to provide assurance of its source.
Two styles:
Classical cryptography uses one secret key; privacy is done by
keeping the key and message secret, whereas authentication is done
by keeping the key secret but making the message public.
Public Key cryptography uses two keys, one public, one private;
privacy is done by encrypting using the recipient's public key (which
she can decrypt using her private key), and authenticity is done by
encrypting using the sender's private key (which anyone can decrypt
using her public key).

Attacks on cipher systems:
(1) Ciphertext Only attack: given ciphertext, determine message

(and key, if possible)
(2) Corresponding Plaintext and Ciphertext attack: given ciphertext

and corresponding plaintext, determine key
(3) Chosen Plaintext attack: obtain ciphertext corresponding to any

plaintext you choose, and then find the key.

Classical Ciphers
Review briefly the concepts of types of ciphers, Cæsar ciphers, etc.
here.

Public Key Ciphers
Requirements: let D be private key, E public; m message, c ciphertext
(1) DEm = m
(2) Given E, it is “computationally infeasible” to get D
(3) E cannot be determined by a chosen plaintext attack
Best known is:
RSA Cryptosystem
(1) Pick two large prime numbers, p and q
(2) Compute n = pq and φ(n) = (p-1)(q-1) (Euler's totient function)
(3) choose any d such that gcd (d, f(n)) = 1
(4) find e such that ed = 1 mod f(n)

ECS 150 (Operating Systems) Computer Security

Spring Quarter 1999 9

Here, the public key is (e, n), and the private key is d. Given n, it
is computationally infeasible to find φ(n) because the techniques
known all involve factoring n (or doing the equivalent).

To encrypt a (plaintext) message m, compute
c = me mod n

and to decrypt ciphertext c, compute
m = cd mod n

This works because of Euler's Generalization to Fermat's Little
Theorem, which says that

aφ(n) ˚ 1 (mod n)
when gcd(a, n) = 1; so
m = cd mod n = (me mod n)d mod n = med mod n = mkφ(n)+1mod n

= ((mφ(n) mod n)k mod n) (m mod n) = m mod n = m
This is considered a very strong cipher provided you pick n to be at
least 512 bits; factoring techniques will make lesser values soon
factorable.
example: We want to use the encoding a = 00, …, z = 25, <blank> = 26,
and write letters in pairs; this means n must be at least 2626 (so
we can represent all possible pairs of letters). Take p = 53, q = 61;
then n = 53 × 61 = 3233, and φ(n) = 52 × 60 = 3120. Pick d = 71 (as
gcd(71, 3120) = 1); this gives e = 791. Note

de mod φ(n) = (71)(791) mod 3120 = 1.
So, the public key corresponding to the private key 791 is (71, 3120).
Now, to encrypt “renaissance” for this user, we split it into pairs of
le t ters :

re na is sa nc e<blank>

In the encoding, this becomes
1704 1300 0818 1800 1302 0426

To encrypt for privacy, we use the recipient's public key, so the
ciphertext is

3106 0100 0931 2691 1984 2927
as 170471 mod 3233 = 3106, etc.
SIgnatures (for authenticity): Suppose our private key is 61; then our
public key must be (1381, 3233). So to sign the message
“renaissance”, again we get the encoding:

1704 1300 0818 1800 1302 0426
and encrypt it but using our private key:

2436 0629 0818 0336 1302 1890
as 170461 mod 3233 = 2436, etc. Note that anyone can read this (as
the decryption key is public), but without the private key no-one
could generate it!

ECS 150 (Operating Systems) Computer Security

Spring Quarter 1999 1 0

One-Way Functions
Describe these: noninvertible functions (like a good hash function);
require:
(1) Given a message m, easy to compute c = f(m);
(2) Given a ciphertext c, computationally infeasible to find any m

such that c = f(m)
(3) Given a ciphertext c and its corresponding message m,

computationally infeasible to find an m' such that c = f(m') and
m' ≠ m.

example: UNIX password encryption algorithm
Describe it, including salt

