Final Study Guide

This is simply a guide of topics that I consider important for the final. I don't promise to ask you about them all, or about any of these in particular; but I may very well ask you about any of these, as well as anything we discussed in class, in discussion section, or that is in the reading.

- 1. Anything from the midterm study guide
- 2. Memory management
 - a. Bare machine, resident monitor, fence addresses, and fence registers
 - b. Relocation and address binding
 - c. Bounds registers, base and limit registers
 - d. Internal vs. external fragmentation
 - e. Compaction
 - f. Paging and page tables
 - g. Segmentation and segment tables
 - h. Optimizations: cache, hit ratio, effective memory access time
 - i. Views of memory: program vs. operating system, address translation
 - j. Protection
 - k. Segmented paging (segment the page table)
 - 1. Paged segmentation (page the segments)
 - m. Virtual memory: demand paging, page faults, pure demand paging
 - n. Page replacement and victims and dirty bits: FIFO, OPT, LRU, stack algorithms
 - o. Minimum number of pages per process
 - p. Global vs. local allocation
 - q. Working set: thrashing, principle of locality, working set principle and model
 - r. Prepaging, I/O interlock, choosing page size, restructuring program
- 3. File Systems
 - a. Virtual vs. physical; names; directory structures
 - b. Access control: rights, ACLs, UNIX abbreviations
 - c. Access via create, open, close, read, write, rewind, delete system calls or commands
 - d. Access methods: sequential, direct mapped, structured
 - e. Disk directory: free list implementations, allocation methods (contiguous, linked, indexed)
- 4. Deadlock
 - a. Resource manager, request, release
 - b. What is deadlock; difference between it and starvation
 - c. Resource types: reusable, consumable
 - d. How to deal with deadlock: ignore, detection and recovery, prevention (mutual exclusion, no preemption, circular wait, hold and wait), avoidance
 - e. Deadlock recovery: breaking circular wait, break no preemption (i.e., allow preemption)
 - f. Deadlock prevention: hierarchical ordering (ordered resource) policy, acquire all resources before running
 - g. Deadlock avoidance: bankers algorithm
- 5. Computer Security
 - a. Confidentiality, integrity, availability
 - b. Policy vs. mechanism
 - c. Saltzer's and Schroeder's Design Principles
 - d. Access control: subjects, objects, access control matrix, ACLs, C-Lists, protection rings
 - e. Cryptographic attacks: ciphertext only, known plaintext, chosen plaintext
 - f. Classical ciphers: Cæsar cipher, Enigma, DES and AES
 - g. Public key ciphers: requirements, RSA cryptosystem
 - h. Cryptographic hashes
 - i. Verification of user identity; the UNIX/MINIX method