Midterm Study Guide

This is simply a guide of topics that I consider important for the midterm. I don't promise to ask you about them all, or about any of these in particular; but I may very well ask you about any of these, as well as anything we discussed in class, in discussion section, or that is in the reading.

- 1. Beginnings and basics
 - a. First generation: open shop
 - b. Second generation: batch, buffering, device independence, interrupts
 - c. Third generation: multiprogramming, basic protection, time sharing, layers of abstraction, virtual machines
 - d. Fourth generation: mini- and microcomputers, networking
 - e. Functions of an operating system: process, memory, secondary storage, user interface, efficiency, reliability, maintainability, small size
 - f. I/O: polling vs. interrupt-driven, DMA
 - g. Types of operating systems: monolithic, kernel, process hierarchy, object oriented, client server
 - h. Command interpreters and user environments for invoking programs
 - i. Basic parts of kernel: first-level interrupt handler, dispatcher, interprocess communications primitives
 - j. Process control block
- 2. Synchronization and Communication
 - a. parbegin, parend
 - b. fork, join, quit
 - c. Bernstein conditions
 - d. Critical section problem
 - e. Evaluating proposed software solutions to the critical section problem
 - f. Software solutions: Petersons solution, bakery algorithm
 - g. Hardware solutions: test and set
 - h. Semaphores: down, up; solving synchronization problems
 - i. Abstract data types, monitors; wait, signal; solving synchronization problems
 - j. Different ways to implement signals in monitors
 - k. Priority waiting in monitors
 - 1. Interprocess communication: send, receive
 - m. Explicit vs. implicit naming; blocking (synchronous) vs. non-blocking (asynchronous) send, receive; link capacity
- 3. Scheduling
 - a. Short-term, medium-term, long-term schedulers
 - b. Metrics for scheduling: turnaround time, response ratio, waiting time, response time, external factors
 - c. Process scheduling algorithms: FCFS, SPN, PSPN, HRRN, RR and quanta, MLFB
 - d. External priority methods: worst service next, deadline scheduling, fair share scheduling
- 4. Input and Output
 - a. Device drivers and transparency
 - b. Structure of a device driver
 - c. Character code independence, device independence, uniform treatment of devices
 - d. Escape characters, bit stuffing
 - e. Device interfaces
 - f. Device drivers: lower, upper parts
 - g. Disk scheduling algorithms: FCFS, pick-up, SSTF, SCAN, LOOK, N-Step SCAN, C-SCAN, C-LOOK
 - h. File, system calls for I/O
 - i. Blocking vs. non-blocking I/O