
ECS 150, Operating Systems Fall Quarter 2008

Static and Dynamic Relocation
This shows the basic hardware instruction cycle for a machine that uses static relocation and for one that uses dynamic
relocation.

Static Relocation
Static relocation refers to address transformations being done before execution of a program begins. A typical hard-
ware instruction cycle looks like this:

loop {
w = M[i n s t r c t r] ; /∗ f e t c h i n s t r u c t i o n ∗ /
oc = Opcode (w) ;
a d r = Address (w) ;
i n s t r c t r += 1 ;
s w i t c h (oc){
c a s e 1 : r e g += M[a d r] ; /∗ add ∗ /
c a s e 2 : M[a d r] = r e g ; /∗ s t o r e ∗ /
c a s e 3 : i n s t r c t r = a d r ; /∗ branch ∗ /
. . .
}

}

Dynamic Relocation
Dynamic relocation refers to address transformations being done during execution of a program. In what follows, the
function NL map (for Name Location map) maps the relocatable (virtual) address va given in the program into the
real (physical) storage address pa:

pa = NL map (va)

So, a typical hardware instruction cycle looks like this:

loop {
w = M[NL map (i n s t r c t r)] ; /∗ f e t c h i n s t r u c t i o n ∗ /
oc = Opcode (w) ;
a d r = Address (w) ;
i n s t r c t r += 1 ;
s w i t c h (oc){
c a s e 1 : r e g += M[NL map (a d r)] ; /∗ add ∗ /
c a s e 2 : M[NL map (a d r)] = r e g ; /∗ s t o r e ∗ /
c a s e 3 : i n s t r c t r = NL map (a d r) ; /∗ branch ∗ /
. . .
}

}

Version of November 7, 2008 at 12:15pm Page 1 of 9

ECS 150, Operating Systems Fall Quarter 2008

Paging and Address Translation
This shows the function used to map a logical address to a physical address for some paging schemes. Throughout this
handout, an address in virtual memory is a pair (logical page, offset) where logical page is the page number
within the logical address space and offset the offset into that page. Also, page size is the size of the page (which is
a multiple of 2). We will assume the entire program is in memory, so no error handling is given; were this assumption
false, the situation where the requested address were not in memory would need to be handled (by generating a page
fault and loading the necessary page).

Paging Address Translation by Direct Mapping
This method stores the page table in main memory and the address of this table in the process control block, in a
register called the page table base register. Let the page table base register be called pt base register, and let
memory represent the main store of the computer. Then:

p h y s i c a l a d d r e s s NL map ((l o g i c a l p a g e , o f f s e t))
{

re turn (memory [p t b a s e r e g i s t e r + l o g i c a l p a g e] ∗ p a g e s i z e + o f f s e t) ;
}

In pictures, here is what is going on:

Paging Address Translation by Associative Mapping
In this algorithm, assoc page table represents an associative memory. This function can check a type of mem-

ory called “associative memory” (or “lookaside memory” or “translation lookaside buffer”) that stores both a frame
number and a page number. The search is done in parallel, and is much faster than a linear (or binary) search. The
function returns the frame number associated with its argument:

p h y s i c a l a d d r e s s NL map ((l o g i c a l p a g e , o f f s e t))
{

re turn (a s s o c p a g e t a b l e (l o g i c a l p a g e) ∗ p a g e s i z e + o f f s e t) ;
}

Paging Address Translation with Combined Associative and Direct Mapping
This combines the above two methods. The array page table is a small associative store that can hold only a few
page numbers; there is also a page table kept in memory. For this method, we shall assume that if there is no entry for
logical page in the associative memory, assoc page table returns −1. Taking everything else as in the previous
two sections:

Version of November 7, 2008 at 12:15pm Page 2 of 9

ECS 150, Operating Systems Fall Quarter 2008

p h y s i c a l a d d r e s s NL map ((l o g i c a l p a g e , o f f s e t))
{

i n t f rame number ;

f rame number = a s s o c p a g e t a b l e (l o g i c a l p a g e) ;
i f (f rame number == −1){ /∗ n o t i n a s s o c i a t i v e memory ∗ /

re turn (memory [p t b a s e r e g i s t e r + l o g i c a l p a g e] ∗ p a g e s i z e + o f f s e t) ;
e l s e

re turn (f rame number ∗ p a g e s i z e + o f f s e t) ;
}

This is the most common method, and is used in modern computers with paging.

Version of November 7, 2008 at 12:15pm Page 3 of 9

ECS 150, Operating Systems Fall Quarter 2008

Segmentation and Address Translation
This shows the function used to map a logical address to a physical address for some segmentation schemes.

Throughout this handout, an address in virtual memory is a pair (segment, offset) where segment is the segment
number within the logical address space and offset the offset into that segment. We will assume the entire program
is in memory, so no error handling is given; were this assumption false, the situation where the requested address were
not in memory would need to be handled (by generating a segment fault and loading the necessary segment).

Segmentation
As with paging address translation with direct mapping, the segment table is stored in memory, and a pointer to its base
in a register called the segment table base register. Let the segment table base register be called st base register,
and let memory represent the main store of the computer. Then:

p h y s i c a l a d d r e s s NL map ((l o g i c a l p a g e , o f f s e t))
{

re turn (memory [s t b a s e r e g i s t e r + segment] + o f f s e t) ;
}

In pictures, here is what is going on:

Version of November 7, 2008 at 12:15pm Page 4 of 9

ECS 150, Operating Systems Fall Quarter 2008

Segmentation and Paging Combined
This shows the function used to map a logical address to a physical address for schemes combining paging and seg-

mentation. Throughout this handout, page size is the size of the page (which is a multiple of 2), seg tbl base reg
contains the address of the base of the segment table, and memory is the main store of the computer. We will assume
the entire program is in memory, so no error handling is given; were this assumption false, the situation where the
requested address were not in memory would need to be handled (by generating a fault and loading the appropriate
data structure).

Segmented Paging
In this algorithm, the page tables are segmented. The virtual address is represented as a pair (logical page, offset),
but the logical page consists of a pair (seg number, seg offset) indicating which segment number seg number
of the page table the frame number frame no is stored in, and the offset seg offset from the base of that segment
table. As usual, an associative memory is first checked; this will be represented by the function assoc page table,
which returns the frame number if that is in the table, and −1 if not:

p h y s i c a l a d d r e s s NL map ((l o g i c a l p a g e , o f f s e t))
{

i n t f r ame no : i n t e g e r ; (∗ number o f f rame ∗)
i n t p g t b l b a s e : i n t e g e r ; (∗ add r . o f page t a b l e segment ∗)

f r ame no = a s s o c p a g e t a b l e (l o g i c a l p a g e) ;
i f (f r ame no == −1){

p g t b l b a s e = memory [s e g t b l b a s e r e g + seg number] ;
f r ame no = memory [p g t b l b a s e + s e g o f f s e t] ;

}
re turn (f r ame no ∗ p a g e s i z e + o f f s e t) ;

}

Paged Segmentation
In this algorithm, the segments are paged. The virtual address is represented as a pair (seg number, offset), but the
offset consists of a pair (page number, page offset), indicating which page number page number of the segment
seg number the frame number frame no is stored in, and the offset page offset from the base of that page. As
usual, an associative memory is first checked; this will be represented by the function assoc page table, which
returns the frame number if that is in the table, and −1 if not. Note it takes the segment number as an argument as
well:

p h y s i c a l a d d r e s s NL map ((seg number , o f f s e t))
{

i n t f r ame no : i n t e g e r ; (∗ number o f f rame ∗)
i n t p g t b l b a s e : i n t e g e r ; (∗ add r . o f page t a b l e segment ∗)

f r ame no = a s s o c p a g e t a b l e (seg number , page number) ;
i f (f r ame no == −1){

p g t b l b a s e = memory [s e g t b l b a s e r e g + seg number] ;
f r ame no = memory [p g t b l b a s e + page number] ;

}
re turn (f r ame no ∗ p a g e s i z e + p a g e o f f s e t) ;

}

In pictures, here is what is going on:

Version of November 7, 2008 at 12:15pm Page 5 of 9

ECS 150, Operating Systems Fall Quarter 2008

Version of November 7, 2008 at 12:15pm Page 6 of 9

ECS 150, Operating Systems Fall Quarter 2008

Page Replacement Algorithms
This handout shows how the various page replacement algorithms work. We shall call the pages of the program a,

b, c, ... to distinguish them from the time (1, 2, 3, ...).

Fixed Number of Frames
We shall demonstrate these algorithms by running them on the reference string ω = cadbebabcd and assume that,
initialy, pages a, b, c, and doccupy frames 0, 1, 2, and 3 respectively. When appropriate, the little arrow→ indicates
the location of the “pointer” that indicates where the search for the next victim will begin.

First In/First Out (FIFO)

This policy replaces pages in the order of arrival in memory.

time 0 1 2 3 4 5 6 7 8 9 10
ω c a d b e b a b c d

frame 0 →a →a →a →a →a e e e e →e d
frame 1 b b b b b →b →b a a a →a
frame 2 c c c c c c c →c b b b
frame 3 d d d d d d d d →d c c

page fault 1 2 3 4 5
page(s) loaded e a b c d

page(s) removed a b c d e

Optimal (OPT, MIN)

This policy selects for replacement the page that will not be referenced for the longest time in the future.

time 0 1 2 3 4 5 6 7 8 9 10
ω c a d b e b a b c d

frame 0 a a a a a a a a a a d
frame 1 b b b b b b b b b b b
frame 2 c c c c c c c c c c c
frame 3 d d d d d e e e e e e

page fault 1 2
page(s) loaded e d

page(s) removed d a

Least Recently Used (LRU)

This policy selects for replacement the page that has not been used for the longest period of time.

time 0 1 2 3 4 5 6 7 8 9 10
ω c a d b e b a b c d

frame 0 a a a a a a a a a a a
frame 1 b b b b b b b b b b b
frame 2 c c c c c e e e e e d
frame 3 d d d d d d d d d c c

page fault 1 2 3
page(s) loaded e c d

page(s) removed c d e
stack (top) c a d b e b a b c d

– c a d b e b a b c
– – c a d d e e a b

stack (bottom) – – – c a a d d e a

Version of November 7, 2008 at 12:15pm Page 7 of 9

ECS 150, Operating Systems Fall Quarter 2008

Not-Recently-Used or Not Used Recently (NRU, NUR)

This policy selects for replacement a random page from the following classes (in the order given): not used or modified,
not used but modified, used and not modified, used and modified. In the following, assume references at times 2, 4,
and 7 are writes (represented by the bold page references). The two numbers written after each page are the use and
modified bits, respectively.

time 0 1 2 3 4 5 6 7 8 9 10
ω c a d b e b a b c d

frame 0 a/00 a/00 a/11 a/11 a/11 a/01 a/01 a/11 a/11 a/01 a/01
frame 1 b/00 b/00 b/00 b/00 b/11 b/01 b/11 b/11 b/11 b/01 b/01
frame 2 c/00 c/10 c/10 c/10 c/10 e/10 e/10 e/10 e/10 e/00 d/10
frame 3 d/00 d/00 d/00 d/10 d/10 d/00 d/00 d/00 d/00 c/10 c/00

page fault 1 2 3
page(s) loaded e c d

page(s) removed c d e

Clock

This policy is similar to LRU and FIFO. Whenever a page is referenced, the use bit is set. When a page must be
replaced, the algorithm begins with the page frame pointed to. If the frame’s use bit is set, it is cleared and the pointer
advanced. If not, the page in that frame is replaced. Here the number after the page is the use bit; we’ll assume all
pages have been referenced initially.

time 0 1 2 3 4 5 6 7 8 9 10
ω c a d b e b a b c d

frame 0 a/0 →a/0 →a/1 →a/1 →a/1 e/1 e/1 e/1 e/1 →e/1 d/1
frame 1 b/0 b/0 b/0 b/0 b/1 →b/0 →b/1 b/0 b/1 b/1 b/0
frame 2 c/0 c/1 c/1 c/1 c/1 c/0 c/0 a/1 a/1 a/1 a/0
frame 3 d/0 d/0 d/0 d/1 d/1 d/0 d/0 →d/0 →d/0 c/1 c/0

page fault 1 2 3 4
page(s) loaded e a c d

page(s) removed a c d e

Second-chance Cyclic

This policy merges the clock algorithm and the NRU algorithm. Each page frame has a use and a modified bit.
Whenever a page is referenced, the use bit is set; whenever modified, the modify bit is set. When a page must be
replaced, the algorithm begins with the page frame pointed to. If the frame’s use bit and modify bit are set, the use bit
is cleared and the pointer advanced; if the use bit is set but the modify bit is not, the use bit is cleared and the pointer
advanced; if the use bit is clear but the modify bit is set, the modify bit is cleared (and the algorithm notes that the
page must be copied out before being replaced; here, the page is emboldened) and the pointer is advanced; if both the
use and modify bits are clear, the page in that frame is replaced. In the following, assume references at times 2, 4,
and 7 are writes (represented by the bold page references). The two numbers written after each page are the use and
modified bits, respectively. Initially, all pages have been used but none are modified.

time 0 1 2 3 4 5 6 7 8 9 10
ω c a d b e b a b c d

frame 0 a/00 →a/00 →a/11 →a/11 →a/11 a/00 a/00 a/11 a/11 →a/11 a/00
frame 1 b/00 b/00 b/00 b/00 b/11 b/00 b/10 b/10 b/10 b/10 d/10
frame 2 c/00 c/10 c/10 c/10 c/10 e/10 e/10 e/10 e/10 e/10 →e/00
frame 3 d/00 d/00 d/00 d/10 d/10 →d/00 →d/00 →d/00 →d/00 c/10 c/00

fault 1 2 3
loaded e c d

removed c d e

Version of November 7, 2008 at 12:15pm Page 8 of 9

ECS 150, Operating Systems Fall Quarter 2008

Variable Number of Frames
Working Set (WS)

This policy tries to keep all pages in a process’ working set in memory. This table shows the pages consitiuting the
working set at each reference. Here, we take the working set to be that set of pages which has been referenced during
the last τ = 4 units. We also assume that a was referenced at time 0, d at time −1, and e at time −2. The window
begins with the current reference.

time −2 −1 0 1 2 3 4 5 6 7 8 9 10
ω e d a c a d b e b a b c d

page a – – a a a a a a – a a a a
page b – – – – – – b b b b b b b
page c – – – c c c c – – – – c c
page d – d d d d d d d d – – – d
page e e e e e – – – e e e e – –

page fault 1 2 3 4 5 6
page(s) loaded c b e a c d

page(s) removed e c a d e

Page Fault Frequency (PFF)

This approximation to the working set policy tries to keep page faulting to some prespecified range. If the time between
the current and the previous page fault exceeds some critical value p, then all pages not referenced between those page
faults are removed. This table shows the pages resident at each reference. Here, we take p = 2 units and assume that
initially, a, d, and e are resident. This example assumes the interval between page faults does not include the reference
that caused the previous page fault.

time 0 1 2 3 4 5 6 7 8 9 10
ω c a d b e b a b c d

page a a a a a a a a a a a a
page b – – – – b b b b b – –
page c – c c c – – – – – c c
page d d d d d d d d d d – d
page e e e e e – e e e e – –

page fault 1 2 3 4 5
page(s) loaded c b e c d

page(s) removed c,e d,e

Version of November 7, 2008 at 12:15pm Page 9 of 9

