
ECS 150, Operating Systems Fall Quarter 2008

Types of Schedulers
This chart shows the function of each of the three types of schedulers (long-term, short-term, and medium-term)

for each of three types of operating systems (batch, interactive, and real-time).

batch interactive real-time
long-
term

job admission based on charac-
teristics and resource needs

sessions and processes nor-
mally accepted unless capacity
reached

processes either permanent or
accepted at once

medium-
term

usually none—jobs remain in
storage until done

processes swapped when neces-
sary

processes never swapped

short-
term

processes scheduled by prior-
ity; continue until wait volun-
tarily, request service, or are
terminated

processes scheduled on rotating
basis; continue until service re-
quested, time quantum expires,
or pre-empted

scheduling based on strict
priority with immediate pre-
emption; may time-share
processes with equal priorities

Version of October 12, 2008 at 7:41pm Page 1 of 10



ECS 150, Operating Systems Fall Quarter 2008

Process Scheduling Algorithms
In this handout, there are 5 processes:

1. Process A arrives at time 0 and takes 10 time units to execute;

2. Process B arrives at time 1 and takes 29 time units to execute;

3. Process C arrives at time 2 and takes 3 time units to execute;

4. Process D arrives at time 3 and takes 7 time units to execute; and

5. Process E arrives at time 4 and takes 12 time units to execute.

Each section shows how several process scheduling algorithms would execute the processes.

First Come First Serve (FCFS)
This policy services processes in the order they start.

process arrival service start finish turnaround waiting response
name time time time time time time ratio

A 0 10 0 10 10 0 1.0
B 1 29 10 39 38 9 1.3
C 2 3 39 42 40 37 13.3
D 3 7 42 49 46 39 6.6
E 4 12 49 61 57 45 4.8
mean 38 26 5.4

In what follows, the number in parentheses in the comment field is the remaining service time for the process. In order
of execution:

time ready queue comments
0 A A(10) arrives, runs
1 AB B(29) arrives, A(9) is not interrupted and continues to run
2 ABC C(3) arrives and is appended to the queue; again, A(8) continues to run
3 ABCD D(7) arrives and is appended to the queue; again, A(7) continues to run
4 ABCDE E(12) arrives and is appended to the queue; again, A(6) continues to run

10 BCDE A finishes, B(29) runs
39 CDE B finishes, C(3) runs
42 DE C finishes, D(7) runs
49 E D finishes, E(12) runs
61 — E finishes

Version of October 12, 2008 at 7:41pm Page 2 of 10



ECS 150, Operating Systems Fall Quarter 2008

Shortest Process Next (SPN)
This policy services the process with the shortest service time next. It is sometimes also called “shortest job next”
(SJN).

process arrival service start finish turnaround waiting response
name time time time time time time ratio

A 0 10 0 10 10 0 1.0
B 1 29 32 61 60 31 2.1
C 2 3 10 13 11 8 3.7
D 3 7 13 20 17 10 2.4
E 4 12 20 32 28 16 2.3
mean 25 13 2.3

In what follows, the number in parentheses in the comment field is the remaining service time for the process. In order
of execution:

time ready queue comments
0 A A(10) arrives, runs
1 AB B(29) arrives, A(9) continues to run
2 ABC C(3) arrives and is appended to the queue; again, A(8) continues to run
3 ABCD D(7) arrives and is appended to the queue; again, A(7) continues to run
4 ABCDE E(12) arrives and is appended to the queue; again, A(6) continues to run

10 BCDE A finishes; C(3) has the shortest service time, so it runs
13 BDE C finishes, D(7) has the shortest service time, so it runs
20 BE D finishes, E(12) runs
32 B E finishes, B(29) runs
61 — B finishes

Version of October 12, 2008 at 7:41pm Page 3 of 10



ECS 150, Operating Systems Fall Quarter 2008

Preemptive Shortest Process Next (PSPN)
This policy services the process with the shortest service time next. It is sometimes also called “preemptive shortest
job next” (PSJN).

process arrival service start finish turnaround waiting response
name time time time time time time ratio

A 0 10 0 2 preempted by C
8 12 20 20 10 2.0

B 1 29 32 61 60 31 2.1
C 2 3 2 5 3 0 1.0
D 3 7 5 12 9 2 1.3
E 4 12 20 32 28 16 2.3
mean 24 12 1.7

In what follows, the number in parentheses in the comment field is the remaining service time for the process. In order
of execution:

time ready queue comments
0 A A(10) arrives, runs
1 AB B(29) arrives; as its service time is greater than that of A(9), B is appended to the queue and

A continues to run
2 CAB C(3) arrives; as its service time is less than that of A(8), C runs. A’s service time is less than

that of B(29), so it goes before B in the queue
3 CDAB D(7) arrives; as its service time is greater than that of C(2), D is placed in the queue at the

appropriate place, and C continues to run
4 CDAEB E(12) arrives; as its service time is greater than that of C(1), E is placed in the queue at the

appropriate place, and C continues to run
5 DAEB C finishes; D(7) has the shortest remaining service time, so it runs

12 AEB D finishes, A(8) has the shortest remaining service time, so it runs
20 EB A finishes, E(12) has the shortest remaining service time, so it runs
32 B E finishes, B(29) has the shortest remaining service time, so it runs
61 — B finishes

Version of October 12, 2008 at 7:41pm Page 4 of 10



ECS 150, Operating Systems Fall Quarter 2008

Highest Response Ratio Next (HRRN)
This policy services the process with the greatest (highest) response ratio next.

process arrival service start finish turnaround waiting response
name time time time time time time ratio

A 0 10 0 10 10 0 1.0
B 1 29 32 61 60 31 2.1
C 2 3 10 13 11 8 3.7
D 3 7 13 20 17 10 2.4
E 4 12 20 32 28 16 2.3
mean 25 13 2.3

In order of execution:

1. At time 0, process A runs for 10 time units, then terminates. At this time:

• Process B’s response ratio is (10−1)+29
29 = 1.3;

• Process C’s response ratio is (10−2)+3
3 = 3.6;

• Process D’s response ratio is (10−3)+7
7 = 2.0; and

• Process E’s response ratio is (10−4)+12
12 = 1.5.

so process C runs.

2. At time 10, process C runs for 3 time units, then terminates. At this time:

• Process B’s response ratio is (13−1)+29
29 = 1.4;

• Process D’s response ratio is (13−3)+7
7 = 2.4; and

• Process E’s response ratio is (13−4)+12
12 = 1.7.

so process D runs.

3. At time 13, process D runs for 7 time units, then terminates. At this time:

• Process B’s response ratio is (20−1)+29
29 = 1.6; and

• Process E’s response ratio is (20−4)+12
12 = 2.3.

so process E runs.

4. At time 20, process E runs for 12 time units, then terminates. At this time:

• Process B’s response ratio is (32−1)+29
29 = 2.0.

so process B runs.

5. At time 32, process B runs for 29 time units, then terminates.

Version of October 12, 2008 at 7:41pm Page 5 of 10



ECS 150, Operating Systems Fall Quarter 2008

Round Robin (RR)
This policy services the processes with a fixed-size quantum, which in this example is 5.

process arrival service start finish turnaround waiting response
name time time time time time time ratio

A 0 10 0 5 end of quantum; B starts
5 23 28 28 18 2.8

B 1 29 5 10 end of quantum; C starts
24 28 33 end of quantum; D starts
19 40 45 end of quantum; E starts
14 47 61 60 31 2.1

C 2 3 10 13 11 8 3.7
D 3 7 13 18 end of quantum; E starts

2 33 35 32 25 4.6
E 4 12 18 23 end of quantum; A starts

7 35 40 end of quantum; B starts
2 45 47 43 31 3.5

mean 35 23 3.3

In what follows, the number in parentheses in the comment field is the remaining service time for the process. In order
of execution:

time ready queue comments
0 A A(10) arrives, runs
1 AB B(29) arrives and is appended to the queue, A(9) continues to run
2 ABC C(3) arrives and is appended to the queue, A(8) continues to run
3 ABCD D(7) arrives and is appended to the queue, A(7) continues to run
4 ABCDE E(12) arrives and is appended to the queue, A(6) continues to run
5 BCDEA The quantum expires, so A(5) moves to the end of the queue and B(29) runs

10 CDEAB The quantum expires, so B(24) moves to the end of the queue and C(3) runs
13 DEAB C finishes, so D(7) runs
18 EABD The quantum expires, so D(2) moves to the end of the queue and E(12) runs
23 ABDE The quantum expires, so E(7) moves to the end of the queue and A(5) runs
28 BDE A finishes, so B(24) runs
33 DEB The quantum expires, so B(19) moves to the end of the queue and D(2) runs
35 EB D finishes, so E(7) runs
40 BE The quantum expires, so E(2) moves to the end of the queue and B(19) runs
45 EB The quantum expires, so B(14) moves to the end of the queue and E(2) runs
47 B E finishes, so B(14) runs
52 B The quantum expires, so B(9) moves to the end of the queue and continues to runs
57 B The quantum expires, so B(4) moves to the end of the queue and continues to runs
61 — B finishes

Version of October 12, 2008 at 7:41pm Page 6 of 10



ECS 150, Operating Systems Fall Quarter 2008

Multilevel Feedback Queues (MLFB)
The variant of this class of scheduling algorithms that is shown here uses three levels:
• Processes at level 1 are scheduled round robin; the relevant quantum is 2, and when a quantum expires the job is

moved to level 2.
• Processes at level 2 are scheduled round robin; the quantum is 4, and processes are allowed 2 quanta before being

moved to level 3.
• Processes at level 3 are serviced first come first serve.

The processes A, B, C, D, and E have been augmented by F, a 1-second job arriving at time 13, and G, an 11-second
job arriving at time 50. These are to demonstrate that quanta are usually not interrupted.

process arrival service start finish turnaround waiting response
name time time time time time time ratio

A 0 10 0 2 end of quantum; B starts
8 10 14 end of quantum; F starts
4 28 32 32 22 3.2

B 1 29 2 4 end of quantum; C starts
27 15 19 end of quantum; C starts
23 32 36 end of quantum; D starts
19 41 60 59 30 2.0

C 2 3 4 6 end of quantum; D starts
1 19 20 18 15 6.0

D 3 7 6 8 end of quantum; E starts
5 20 24 end of quantum; E starts
1 36 37 34 27 4.9

E 4 12 8 10 end of quantum; A starts
10 24 28 end of quantum; A starts

6 37 41 end of quantum; B starts
2 70 72 68 56 5.7

F 13 1 14 15 2 1 2.0
G 50 11 60 70 end of quantum; E starts

1 72 73 23 12 2.1
mean 33.7 23.3 3.7

In what follows, the number in parentheses in the comment field is the remaining service time for the process. In order
of execution:

Version of October 12, 2008 at 7:41pm Page 7 of 10



ECS 150, Operating Systems Fall Quarter 2008

time level 1 level 2 level 3 comments
0 A – – A(10) arrives, runs
1 AB – – B(29) arrives, A continues quantum
2 BC A – C(3) arrives, A’s quantum expires (8), moves to level 2, B runs
3 BCD A – D(7) arrives, B continues quantum
4 CDE AB – E(12)arrives, B’s quantum expires (27), moves down, C runs
6 DE ABC – C’s quantum expires (1), moves down, D runs
8 E ABCD – D’s quantum expires (5), moves down, E runs

10 – ABCDE – E’s quantum expires (10), moves down, A runs from level 2 (level 1 is
empty)

13 F ABCDE – F(1) arrives, A’s quantum continues
14 F ABCDE – A’s quantum expires (4), F runs (at level 1)
15 – ABCDE – F finishes, B runs from level 2 (level 1 is empty)
19 – ABCDE – B’s quantum expires (23), C runs
20 – ABDE – C finishes, D runs
28 – ABDE – E’s quantum expires (6), A runs
32 – BDE – A finishes, B runs
36 – DE B B’s quantum expires (19), moves down, D runs
37 – E B D finishes, E runs
41 – – BE E’s quantum expires (2), moves down, B runs from level 3 (since there is

nothing in higher levels)
50 G – BE G arrives(11), B continues to run
60 G – E B finishes, G runs (since it is in the highest level)
62 – G E G’s quantum expires (9), moves down, G runs from level 2
66 – G E G’s quantum expires (5), G runs
70 – – EG G’s quantum expires (1), moves down, E runs
72 – – G E finishes, G runs
73 – – – G finishes

Version of October 12, 2008 at 7:41pm Page 8 of 10



ECS 150, Operating Systems Fall Quarter 2008

Fair Share Scheduler
A fair share scheduler is used when CPU time is to be divided equally between groups of processes. For this

scheduling algorithm, processes are divided into groups based upon external factors. Such factors include the organi-
zational divisions of the owners of the computer, or classes of customers, or other criteria.

For example, suppose group A has 1 process, group B has 2 processes, group C has 3 processes, and group D
has 4 processes. Under a regular scheduler, each of the 10 processes would get 10% of the CPU. Under a fair share
scheduler, each of the 4 groups would get 25% of the CPU.

Example
Suppose there are 3 processes. Process p1 is in group A, and processes p2 and p3 are in group B. The following
formula assigns process pi a priority Pi:

Pi =
pi’s recent CPU usage

2
+

pi’s group CPU usage
2

In addition, a decay function decrements the current CPU usage of all processes. This ”spreads out” the priority of the
processes in the ready queue. The decay Di for pi is:

Di =
pi’s recent CPU usage

2

In this system, the lower the numerical value of Pi, the higher the priority of process pi.
The following shows how processes execute, given a quantum of 60 ticks. All arithmetic is integer arithmetic, and

the decay function is applied after the most recent CPU time is added in, but before the priorities are computed.

First 60-Tick Interval
At the beginning of this interval, all priorities are equal, so the process to run is chosen randomly. Say p1 is selected
to run. It runs, and at the end of the interval, its CPU usage is updated to 60. The group CPU usage for group A, to
which p1 belongs, also is updated to 60. The decay function is then applied, cutting both to 30. The CPU usage for p2
and p3, and for group B, are 0, so the decay function does not change them. The priority P1 of p1 becomes

P1 =
p1’s recent CPU usage

2
+

p1’s group CPU usage
2

=
30
2

+
30
2

= 15+15 = 30

Second 60-Tick Interval
At the beginning of this interval, P2 and P3 are equal, and both are less than P1, so either p2 or p3 will run. Say p2 is
selected to run. It runs, and at the end of the interval, its CPU usage is updated to 60. The group CPU usage for group
B, to which p2 belongs, also is updated to 60. The decay function is then applied, cutting both to 30. It also cuts the
CPU usage of p1 to 15, and the group CPU usage of group A to 15. The CPU usage for p3 is 0, so the decay function
does not change it. The priorities become

P1 =
p1’s recent CPU usage

2
+

p1’s group CPU usage
2

=
15
2

+
15
2

= 7+7 = 14

P2 =
p2’s recent CPU usage

2
+

p2

2
=

30
2

+
30
2

= 15+15 = 30

P3 =
p3’s recent CPU usage

2
+

p3’s group CPU usage
2

=
0
2

+
30
2

= 0+15 = 15

Third 60-Tick Interval
At the beginning of this interval, P1 is less than P2 or P3, so p1 runs. At the end of the interval, its CPU usage is
updated to 15 + 60 = 75. The group CPU usage for group A, to which p1 belongs, is similarly updated to 15 + 60 =
75. The decay function is then applied, cutting both to 37. It also cuts the CPU usage of p2 to 15, and the group CPU
usage of group B to 15. The CPU usage for p3 is 0, so the decay function does not change it. The priorities become

Version of October 12, 2008 at 7:41pm Page 9 of 10



ECS 150, Operating Systems Fall Quarter 2008

P1 =
p1’s recent CPU usage

2
+

p1’s group CPU usage
2

=
37
2

+
37
2

= 18+18 = 36

P2 =
p2’s recent CPU usage

2
+

p2’s group CPU usage
2

=
15
2

+
15
2

= 7+7 = 14

P3 =
p3’s recent CPU usage

2
+

p3’s group CPU usage
2

=
0
2

+
15
2

= 0+7 = 7

Fourth 60-Tick Interval
At the beginning of this interval, P3 is less than P1 or P2, so p3 runs. At the end of the interval, its CPU usage is
updated to 0 + 60 = 60. The group CPU usage for group B, to which p2 belongs, is similarly updated to 15 + 60 = 75.
The decay function is then applied, cutting p3’s CPU usage to 30 and the group CPU usage to 37. It also cuts the CPU
usage of p1 to 18, the CPU usage of p2 to 7, and the group CPU usage of group A to 18. The priorities become

P1 =
p1’s recent CPU usage

2
+

p1’s group CPU usage
2

=
18
2

+
18
2

= 9+9 = 18

P2 =
p2’s recent CPU usage

2
+

p2’s group CPU usage
2

=
7
2

+
37
2

= 3+18 = 21

P3 =
p3’s recent CPU usage

2
+

p3’s group CPU usage
2

=
30
2

+
37
2

= 15+18 = 33

Summary Table
This table summarizes the first 8 seconds. The figures shown are for after the ticks and after the calculations of
priorities. The usages are after the decays.

priorities CPU usage group usage
ticks P1 P2 P3 p1 p2 p3 A B runs

0 0 0 0 0 0 0 0 0 A
60 30 0 0 30 0 0 30 0 B

120 14 30 15 15 30 0 15 30 A
180 36 14 7 37 15 0 37 15 C
240 18 21 33 18 7 30 18 37 A
300 38 10 16 39 3 15 39 18 B
360 18 34 22 19 31 7 19 39 A
420 38 16 10 39 15 3 39 19 C

... ... ... ... ... ... ... ... ... ...

Version of October 12, 2008 at 7:41pm Page 10 of 10


