—_
— O 0 0 NN R W=

— e e
AN B W

ECS 150, Operating Systems Spring Quarter 2022

Bakery Algorithm

This algorithm solves the critical section problem for n processes in software. The basic idea is that of a bakery;
customers take numbers, and whoever has the lowest number gets service next. Here, of course, “service” means entry
to the critical section.

var choosing: shared array[0..n-1] of boolean;
number: shared array[0O..n—-1] of integer;

repeat
choosing[i] := true;
number[i] := max(number[O],number[1],...,number[n-1]) + 1;
choosing[i] := false;
for j := 0 to n—-1 do begin
while choosing[j] do (% nothing =);
while number[j] <> 0 and number[j], j) < (number[i],i) do
(* nothing =);
end ;
(% critical section =)
number[i] := O0;

(% remainder section =)
until false;

lines 1-2: Here, choosing[i] is true if process i is choosing a number. The number that process i will use to enter
the critical section is in number[1i]; it is O if process i is not trying to enter its critical section.

lines 4-6: These three lines first indicate that the process is choosing a number (line 4), then try to assign a unique
number to the process process i (line 5); however, that does not always happen. Afterwards, process i indicates it is
done (line 6).

lines 8-11: Now we select which process goes into the critical section. Process i waits until it has the lowest number
of all the processes waiting to enter the critical section. If two processes have the same number, the one with the
smaller name — the value of the index — goes in; the notation “(a,b) < (c,d)”; means true if a < c or if both a = c and
b < d (lines 9-10). Note that if a process is not trying to enter the critical section, its number is 0. Also, if a process is
choosing a number when process i tries to look at it, process 1 waits until it has done so before looking (line 8).

line 14: Now process i is no longer interested in entering its critical section, so it sets number[i] to 0.

Version of April 17, 2022 at 9:29pm Page 1 of



