

P

R O J E C T

: H A C Q I T E

X E R C I S E

E C S 1 5 3 — W

I N T E R

 2 0 0 2

Version of January 3, 2002 3:54 pm Page 1 of 6

Project: HACQIT Exercise

Introduction

One of the goals of this class is to teach how to analyze the security of systems. The

penetration test

 is a powerful

a posteriori

 testing technique that examines not only the design and implementation of a system but also its mainte-
nance and operation—the latter two often being overlooked in

a priori

 evaluations (because the system is not yet fully
operational, or is not yet in its production environment).

A proper penetration test devises specific goals that the testers are to achieve. Examples of such goals are to
acquire

root

 access on a UNIX system, to read a specific file, to create or delete a specific file, or to block access to
the system for some period of time. The goals vary depending upon the security policy of the site and upon the rea-
sons for the test.

We will use the Flaw Hypothesis Methodology for this study. The project grade does

not

 depend upon achieving
the stated goals It depends upon the correct implementation of the Flaw Hypothesis Methodology. You are required to
keep a notebook to demonstrate that you are using the methodology. If the notes show what you thought of, tried (and
how it was tried), the results, and any ideas that spring from the test, you will get a good grade. If the notes do not
show this, you will receive a bad grade even if some of the goals of the test are met. In other words, your grade
depends upon your use of the methodology.

Background

This class section will analyze a set of systems implementing a controller designed to provide service even when
intrusions occur. Although breaking into the systems is of interest, so is merely inhibiting their response. So this
should be a fun exercise!

You are required to follow certain rules. If you break the rules, we can (and will) take appropriate action, up to
and including removing your access to the Teknowledge systems and filing a complaint with the SJA. For whatever it
is worth, we have never had to do this before, and I’d like to keep this class’ good record intact. So, your classmates,
the teaching assistants, the researchers at Teknowledge and the UC Davis Computer Security Laboratory, and I would
appreciate your cooperation.

You are being granted access to a portion of the Teknowledge network at Teknowledge Corporation for the pur-
poses of this course. You will be given an IP address, a user ID, and a password. Use there as your

exclusive

 means to
access the systems.

• These user IDs and accounts may

only

 be used for the purposes of this class and not for any other purpose.

• User IDs and passwords

must not

 be shared with others. They are for your class use and no other use.

• You must not advertise, in any way, your use of these systems to others. They are just more class systems used in
your education and they happen to be operated by and located at Teknowledge.

• Federal law explicitly prohibits the placement of, or transfer of, any pornographic or “inappropriate” material in,
to, or from these systems.

• The defenses in these computers do not necessarily reflect any particular defenses used in any other particular
computers or networks.

• These computers may include experimental defenses, intentionally weakened or artificially strengthened
defenses, and

any

 defense technologies that the defenders see fit to place in them.

• Teknowledge’s research group may be recording your uses of these computers for their research.

Do not

 attempt
in any way to circumvent this recording, unduly obfuscate your methods, or pander to them. Just go about your
business as if we never told you this ….

You will only be able to reach the Teknowledge systems by using SSH to enter a secure login server (more on
this below). Please

do not

 proxy back X11—use this SSH connection only for terminal sessions and securely copying
files. This is necessary because 70 students proxying back X11 will make the connection to UCD collapse.

Think of access to the login server as insider access to the network under attack, obtained from an insider who
has loaned you her computer so you can break in. The login server is

not

 to be attacked in any way by your teams

P

R O J E C T

: H A C Q I T E

X E R C I S E

E C S 1 5 3 — W

I N T E R

 2 0 0 2

Version of January 3, 2002 3:54 pm Page 2 of 6

because it is a shared resource for your classmates.

The exercises for this class are part of an experiment that Teknowledge and the UC Davis Computer Security
Laboratory are running. Your actions on Teknowledge systems will be monitored, and the researchers may use those
actions and the results of those actions in their work. Your names will not be used for any purpose except to grant you
access to the computers, or to take action if you break the rules.

The HACQIT Systems

The goal of the HACQIT project is to “provide four hours of intrusion tolerance with no more than 25% degrada-

tion of aggregate user performance.”

1

 The project divides servers into two classes: critical and non-critical. HACQIT
is concerned only with the critical servers.

The figure below shows the arrangement of the HACQIT network. You will connect to the Teknowledge network

from one of the CSIF systems. This puts you onto a login server (“staging computer” in the diagram above). The tar-
gets will be the HACQIT cluster and the paths between that cluster and the critical users. The HACQIT web server
connected to the enclave LAN will be used to monitor the attacks and provide mechanisms for you to ask questions of
the HACQIT administrators.

Do not attack that server!

 You get no credit for doing so, and will cause everyone in the
class problems and make them

very

 unhappy. So please be courteous!

 The HACQIT architecture makes several assumptions about the network:

1. The LAN is reliable, cannot be flooded, and is the only means of communication between the users and the serv-
ers. This means that the servers will

not

 provide the desired level of service should the LAN be flooded.

2. No denial of service attacks are directly launched against critical users.

3. Users and attackers interact with the critical servers over the hardware and software in the LAN and the HACQIT
cluster.

4. The HACQIT cluster, its hardware, and software are pristine at start-up and are patched against known vulnera-
bilities.

5. Critical users are trusted. (

Note

: you are not a critical user!)

6. Unknown vulnerabilities exist.

The HACQIT cluster is illustrated in the figure below. The firewall (FW) controls access to the LAN. It imple-
ments a virtual private network (really, an encrypted tunnel) between the critical user and the HACQIT cluster. The
primary and backup servers provide the desired services. The monitor and adapter control the servers, and have an
out-of-bands communication channel so the services (and defenses) can be reconfigured dynamically as needed. The

1. J. Just

et al

., “Technology Characterization and Survivability Validation Framework for HACQIT: Hierar-
chical Adaptive Control for QoS Intrusion Tolerance” (working paper), p. 1.

Team 1Team 1

Enclave LAN

HACQIT Web
Server

(Off Limits)

Critical
User 2

F
W

GW
Switch

FW

Monitor
&

Adapter

VPN

Internet

Sandbox

Primary

Backup

Spare

Davis LAN

Team 1

Critical
User 1

Staging
Computers

HACQIT Cluster

P

R O J E C T

: H A C Q I T E

X E R C I S E

E C S 1 5 3 — W

I N T E R

 2 0 0 2

Version of January 3, 2002 3:54 pm Page 3 of 6

sandbox contains a duplicate of the primary and backup servers, and is used to determine whether failures are tran-
sient or the result of an attack, and whether a request will cause an error.

The cluster will be shutdown for daily maintenance each morning and, if needed, at other times. Information on
LAN and cluster status will be posted on the HACQIT web server on the test enclave LAN, which (again) is

not to be
attacked

.

The critical application is a web-enabled message board running under either Microsoft’s Internet Information
Services (IIS) or the Apache web server.

The protection mechanisms and software on the HACQIT cluster for the class will likely change over the course
of the term. The HACQIT team will notify the class of these changes as they occur.

Finally, the HACQIT system is still under development. It’s very far along, and we do not expect problems. But,
unexpected problems may occur. If that happens, please notify the HACQIT team at hacqit@teknowledge.com, and
bear with them as they fix it.

Goals

There are three possible desired outcomes for this penetration study. You should try to do as many as possible,
but expect not to do all. The goals are, in (what we think is the) order of difficulty:

1. Degrade the service provided by the HACQIT cluster to users on the target LAN by more than 25%. You must
stay within the assumptions of the HACQIT project. Specifically, you may not launch denial of service attacks
directly against critical users or flood the LAN.

2. Gain access to the HACQIT cluster so that you can cause desired changes on it. Desired changes (in increasing
difficulty) are:

a. alter any file (

proof

: identify the altered file by name and its previous and subsequent content along with how
you did it);

b. gain superuser access (

proof

: show the contents of a root-only accessible file);

c. add an account for yourself (

proof

: show the new password file and provide us with the name, UID, and
password of the new account); and

d. disable or shut down the server (

proof

: some evidence showing the server is not running, and we will verify
this with system logs).

3. Gain access to the virtual private network (

VPN

) between the HACQIT cluster and the user on the local LAN.
You will have to insert commands or data that are interpreted by either end to demonstrate this, or supply the

GW
Switch

FW

Monitor
&

Adapter

Communications
with other

Monitor/Adapters
and Cyber Panel

Monitor-adapter uses Out-of-Band
signaling for complete separation from

network attacks on LAN and WAN

To Critical Users
Out-of-Band

Control Pathways

VPN

Sensors

Controls

Primary

Backup

Spare

To Enclave Firewall & Sensors

Sandbox

Only the current Primary
is accessible to users

P

R O J E C T

: H A C Q I T E

X E R C I S E

E C S 1 5 3 — W

I N T E R

 2 0 0 2

Version of January 3, 2002 3:54 pm Page 4 of 6

cryptographic keys for some specified connection.

When you attack successfully, please leave your team name behind. This will help the observers correlate log
information.

Notebooks

In what follows, a “vulnerability” is any method that will achieve any of these goals.

We will discuss the Flaw Hypothesis Methodology in class. It is also covered in the textbook (see section 19.2.4),
Your notebook must document your use of this methodology. It should consist of four types of entries.

Knowledge of the System

These entries document things you have learned about the system. For example, if you establish that the server is
an SCO system, you would create an entry saying that and explaining how you know it is an SCO system. Your obser-
vations may either be used to reach one of the goals, or to provide background information of other entries.

Hypotheses

These entries document suspected vulnerabilities in the system. In addition to the hypothesized vulnerability, you
must say why you think the vulnerability might exist (for example, the system is a Linux Red Hat 6.2 system, and the
vulnerability is known to exist for that system). You also have to say what the consequence of the vulnerability would
be (for example, if this buffer overflow in the setuid to

root

 program succeeds, you can execute an arbitrary program
and thereby get access to

root

). Indicate which goal (or goals) the hypothesized vulnerability would help you achieve.

Testing

Choose at least 10 hypothesized vulnerabilities and design tests that will tell you if the vulnerability exists and is
exploitable. You do not need to exploit the vulnerability for the test (although many times that is the only way to test).
You must be able to carry out the test. For example, you cannot say, “the system administrators should check the con-
tents of the protected file /etc/errors, and if the contents of that file begins with ‘abracAdabra’ the system is vulnera-
ble.” If you can’t read the file, you’ll have to devise some way of testing whether the file contains what you think. One
way is to try to exploit the vulnerability … you get the idea.

Document each test in detail. We will need to be able to repeat it. For each test, document the relevant parts of the
system and environment settings, the arguments to the program, the input, and the output, and any relevant side
effects (like creating s setuid-to-

root

 shell).

Generalization

Some of the tests you documented in the previous entries will succeed. Others will fail. From this, you may get
ideas for other vulnerabilities, or be able to generalize to find new vulnerabilities. For example, if a buffer overflow
allows you to obtain

root

 privileges, and the bug is in a library call, check other programs for use of that library call.
They are also vulnerable, in all probability. Document any generalizations, and hypothesize new vulnerabilities based
upon them.

Staged Exercise

The penetration exercise will proceed in stages, each stage being approximately two weeks. Initially, the system
will be fairly open. Successive stages will tighten security. This way, you will be able to become familiar with the sys-
tem as you proceed through the stages. You will be required to submit your notes at the end of each stage.

The stages are:

Stage 1. Gaining Familiarity with HACQIT

In this stage, you will have full access through the firewall from the login servers on the enclave LAN. For this
stage, you should

not

 try to penetrate anything. However, you

can

 gather information for future use.

1. The goal of this stage is to gain basic familiarity with HACQIT, not to attack the cluster. It will also allow the
HACQIT team time to ensure that the student load can be met with the proper number of login servers,

etc

. The
HACQIT team will leave the firewall and cluster relatively open so that you can familiarize yourself with its

P

R O J E C T

: H A C Q I T E

X E R C I S E

E C S 1 5 3 — W

I N T E R

 2 0 0 2

Version of January 3, 2002 3:54 pm Page 5 of 6

operation.

2. Each team will have a user account for the designated login server on the test enclave LAN. You are to log into
these machines from CSIF lab machines using SSH. The login servers will also be equipped with another VPN
product (likely FreeS/Wan) to connect to the cluster firewall. They will also have the

lynx

 browser so that you can
try out the critical application, a simple web-enabled message board running under ISS or Apache (as described
above). Please familiarize themselves with inserting messages.

3. During this stage, you will have open access through the firewall from the designated login servers using the
above VPN. Each team will be provided with a VPN name and password for designated login servers so they can
access the cluster.

4. Two critical users will be simulated on two other workstations running Microsoft Windows 2000.

These are off
limits to denial of service attacks throughout all stages of this exercise

. These workstations will be hardened
and, perhaps, set up as multi-user systems. For the first stage, the personal firewalls on these machines will be
opened up. The normal workload of posting messages to the critical application and normal VPN login will be
simulated for both critical users.

If you notice that the login server(s) for the class is (are) overloaded, crash, or have other problems, please notify
the HACQIT team test administrator at hacqit@teknowledge.com.

Stage 2. Initial Attacks: Only VPN Traffic through Firewalls

This stage allows attacks against a relatively open system. The HACQIT system, enclave LAN, and critical user
workstations will have no significant change from stage1. The HACQIT cluster firewall will only allow traffic
through the VPN, and the personal firewalls on both critical user workstations will be left open.

Stage 3. More Involved Attacks: Student Access to VPN Removed

This stage allows attacks against a less open system. In this stage, student user accounts on the firewall for the
VPN will be removed, thereby removing your access to the VPN. But the critical user workstation firewalls remain
open.

Stage 4. Attacking A Fully Operational HACQIT: Critical User Workstation Firewalls Closed

This stage has the HACQIT cluster fully operational. The critical user workstation firewalls will be configured to
the settings for a fully operational system. During this stage, additional systems may be added and the configuration
changed. Notices of these changes will be posted to the HACQIT web site.

Organization

For this project, you will need to work in teams of 2. You must pick someone in your own section to work with
(the other section is doing a different penetration study). Once you have selected your team, please email the team
member names and email addresses to cs153@cs.ucdavis.edu. Members of a team may exchange information freely;
the project is their joint work. However, different teams may

not

 communicate. Each team works independently of all
other teams. This is necessary for two reasons. First, if two teams independently come up with the same vulnerability,
they can both use it; were the teams communicating, there would be questions of priority that we want to avoid han-
dling. Secondly, your efforts will be monitored for research purposes, and a copy of your notes will be sent to the
researchers. Collaboration across teams will bias the results and limit the effectiveness of the research.

Conclusion

The goal of this project is to help teach you ways to analyze systems for security. It will also bring to life some of the
concepts we will discuss in class. Also, in order to defend a system, you need to know how to figure out where you
might be attacked. In the instructor’s experience, those who know how to attack are much better defenders because
they can react, and understand, much more quickly and effectively than can those who have only check lists of things
to look for, or who do not know how attackers think.

User Accounts and IP Addresses

Information about logging into the Teknowledge login server is available on the class web page. Please go to

P

R O J E C T

: H A C Q I T E

X E R C I S E

E C S 1 5 3 — W

I N T E R

 2 0 0 2

Version of January 3, 2002 3:54 pm Page 6 of 6

http://my.ucdavis.edu

, sign in, go to the class web page, and from there to

projects/hacqit/ids.html

.

Important Addresses

HACQIT test administrators’ email address: hacqit@teknowledge.com.

Appendix

Just in case you are curious, here is a diagram showing a (simplified) picture of the software implementation of
the HACQIT cluster.

The following table summarizes the complexity of the components.

Enclave
LAN &
WAN

Gateway
Firewall

FGS Controller

Sandbox

Primary
Duplicate

Backup
Duplicate

Offline Backup
(Spare)

Other Controllers

Primary

Connection
Manager

Protection
Wrapper

IIS

Application
Monitor

Host
Monitor

Tripwire

SNORT

IP Switch

Backup

Connection
Manager

Protection
Wrapper

Apache

Application
Monitor

Host
Monitor

Tripwire

SNORT

Out-of-Band Communication Mediator
Out-of-Band Controller

MAC
Policy
Editor

Policy
Server

Buffer &
Log

Operator
Display Forensics

Analyzer

Content
Filter

Circular
Buffer

Generalizer

Module Language Lines of Code Comment
Connection Manager Java 819
MAC Java 3589
Policy Java 2592
Policy Editor Java 3871
Util Java 569
 Sub-total 11440

Application Protection C++ 1930 Wrapper
Application Monitor C++ 773
WCW C++ 2143 Wrapper / ISAPI Filter
Content Filter Bridge C++ 336 JNI
Forensics C++ 1398
Monitor lib C 653 Utility used by HM/AM
Native Bridge C++ 9081 JNI
String Utils C 1576
hacqithm C/C++ 6502 Host Monitor
Suspicious Activity
Monitor (SAM)

C 406 Checkpoint sample code

 Sub-total 24798
15 modules Total 36238

