

A

L L

 A

B O U T

 H

O M E W O R K

E C S 1 5 3 — F

A L L

 2 0 0 3

Version of September 25, 2003 12:00 pm Page 1 of 2

All About Homework

The homework will consist of both programming exercises and written questions. This handout describes some gen-
eral thoughts and techniques for doing homework, as well as what is required, how to submit it, how late homeworks
are handled, and other administrative matters.

Turning In Homework

All homework is due at noon on the due date, unless noted otherwise on the assignment. These will be graded and
returned to you as quickly as possible; we’ll try for three class periods, but can’t guarantee it .

For written homework, you must turn in an ASCII, a PostScript, or a PDF version of your answers (you can use any
text processor you like to generate these). Please do

not

 submit Microsoft Word files; since the readers may grade
these on UNIX-based and Linux systems, they will not be able to read those files. If you submit PostScript, please be
sure the file will print on our department printers (use

ghostscript

 or

gs

 to check this; if it displays the file properly,
the file should print correctly). If your file is a PostScript file, choose a name that ends in “.ps”. If it is an ASCII file,
please choose a name that ends in “.txt”. If your file is a PDF file, choose a name that ends in “.pdf”.

For programs, turn in the source code, Makefile (you

must

 include one) and any related information (such as man
pages and README files). Be sure that we can recompile the program

without errors

 by typing “make”. You are free
to use any programming language that is available on the CSIF and that the ECS 153 graders can get to. C or C++ is
preferred.

Please turn in both your written exercises and programs electronically through

MyUCDavis

.

Do not use the handin
program!

Doing Written Exercises

When you are asked to analyze something, or explain something, please be complete, and

show your work

 (including
any commands you give, and their output, to show how you did the problem). Otherwise, even if you get the right
answer, you will get

ZERO

 (that’s

0

,

zip

,

nada

,

rien

, nothing

) points. Think your answer through and do a rough
draft. Students (and professionals, actually) often overlook this, but it is

vital

. Write clearly and cogently. If the ques-
tion asks for an opinion, state your opinion clearly, justify it, and don’t ramble. Answers that start, “My opinion is yes
…” and conclude with “ … on the other hand it could equally well be no” won’t get much credit.

Some homeworks will have one problem that will require you to ask a question. Your question can come from some-
thing in class, in the notes, something you read or heard about in the media, or just something that strikes your fancy.
Your question must be specific, in the sense that it challenges an assumption or raises issues of analysis for a problem.
Here are some examples:

1. A firewall is supposed to allow only some messages through from the outside to the inside. The assumption is
that the firewall’s software works right. How do they tell when the code that does this filtering is working right?

2. You said in class that using

strcpy

 is bad because it doesn’t check bounds, and we should use

strncpy

. But what
happens if we give

strncpy

 a negative length?
3. Is “ethical hacking” really ethical?

The reason for this problem lies in the nature of security. Invariably, the assumptions a security mechanism or policy
makes are the points at which that mechanism or policy are most vulnerable. Why? Assumptions, designs, and imple-
mentations invariably make certain assumptions about the environment. One of the goals of this class is to teach you
to question these assumptions.

Doing Programming Exercises

Please do not leave assignments for the last minute. The assignments are non-trivial and will require significant
design time before you start programming and debugging. When we decide on the due dates, we assume you will
spend significant amounts of time on design as well as coding and debugging. If you choose not to do this, you will
have difficulty finishing the assignments on time.

Please take the time to design your program carefully. More programming problems arise from improper design than
anything else, and the few hours you spend on design will be amply repaid by shorter coding and debugging phases.

A

L L

 A

B O U T

 H

O M E W O R K

E C S 1 5 3 — F

A L L

 2 0 0 3

Version of September 25, 2003 12:00 pm Page 2 of 2

So please think the design and interfaces through, and—as always—try to find the simplest way to do the assignment
(within the limits given in the assignment, of course)!

We do not mind being asked for help; indeed, we welcome it because it helps us know what students are finding diffi-
cult or confusing, and sometimes a few words about the problem in class will clarify the assignment immensely. We

do

 mind being asked for help before you have tried to think the problem through. The classic objectionable question
(this really happened) occurred on a homework assignment in which the class was given a buggy program. The
assignment said the program did not work, and the homework was to debug it and make it work. That particular class
period discussed how to deal with bugs, and gave tips and techniques on how to debug programs. Within 10 minutes
of the end of the class during which the assignment was given out, the instructor got this request for help: “The pro-
gram doesn’t run. What do I do now?”

So, before asking for help, please be sure that you have:

• spent a significant amount of time on the design of your solution;
• used a debugger if the problem is a programming bug;
• read all relevant handouts, and news articles (because your question may be answered there); and
• tried everything you could think of to solve the problem.

When you come to us, or send us a note, asking for help, please show us whatever you have done to solve the prob-
lem, because the first question we will ask you is “What have you tried?” This isn’t because we think you’re wasting
our time. It’s because understanding how you have tried to solve the problem will help us figure out exactly what your
difficulty is and what we can do to help you. Remember, we will do everything we can to avoid solving the problem
for you. When we give you help, our goal is to help

you

 solve the problem yourself.

What We Look For In Programming Exercises

When we grade your homework, we look for simplicity, clarity, elegance, and documentation. Here’s a rough weight-
ing of the various factors that go into the grade of each program:

Correctness 60%

Commenting, ease of reading 20%

Clean, readable output 10%

Documentation (README, man page,

etc

.) 10%

If a program does not compile (or assemble), the maximum you can get is 30% of the value of the program (20% for
commenting and ease of reading, and 10% for documentation). So check your programs before you submit them!

Late Homework

You can turn in your homework up to one class period late (unless the assignment says otherwise). If you turn it in
late, we will grade it normally, and then deduct 20% as a late penalty. Requests for exceptions will be handled on a
case-by-case basis; please do feel free to ask!

Grade Appeals

If you feel that there is an error in grading, please come see me or one of the TAs and we’ll look over it (and possibly
talk with you about it). However, don’t dally; any such request must be made within one week of when the grades
were made available. After that, we won't change your grade.

