

ECS 153, Introduction to Computer Security Spring Quarter 2005

Last changed on May 26, 2005 at 10:27 pm Page 1 of 2

Sourceanalyzer

Sourceanalyzer

 is a program that analyzes other programs for vulnerabilities. This is a

very

 brief explanation of its
output. For more detail, see the documentation in /usr/local/FortifySoftware/SCAS3.1-EE/Documentation.

The Program

This C program copies a string into buffer and quits. It’s clearly a demonstration program!

#define MAX_SIZE 128

void doMemCpy(char* buf, char* in, int chars) {

 memcpy(buf, in, chars);

}

int main() {

 char buf[64];

 char in[MAX_SIZE];

 int bytes;

 printf("Enter buffer contents:\n");

 read(0, in, MAX_SIZE-1);

 printf("Bytes to copy:\n");

 scanf("%d", &bytes);

 doMemCpy(buf, in, bytes);

 return 0;

}

It has a couple of security problems, were it to be installed setuid and set so anyone could run it. Can you find them
before going any further?

The Analysis

We run the

sourceanalyzer

 program over this program, as follows:

sourceanalyzer gcc stackbuffer.c

You will have to set your search path to look in the directory /usr/local/FortifySoftware/SCAS3.1-EE, of course.
Here is the output:

[/usr/local/FortifySoftware/SCAS3.1-EE/Samples/basic/stackbuffer]

[BB73F23E46159FBE5ED3C1968C046828 : low : Unchecked Return Value : semantic]

stackbuffer.c(13) : read(0)

[EDACF5BD763B329C8EE8AA50F8C53D08 : high : Buffer Overflow : data flow]

stackbuffer.c(4) : ->memcpy(2)

 stackbuffer.c(17) : ->doMemCpy(2)

 stackbuffer.c(15) : <- scanf(1)

The analyzer has identified two poor programming practices that may lead to security problems.

ECS 153, Introduction to Computer Security Spring Quarter 2005

Last changed on May 26, 2005 at 10:27 pm Page 2 of 2

1. The function

read

 at line 13 returns a value that is not checked. The danger from this is low. It is a semantic prob-
lem, that is, it results from the semantics of read returning a value.

2. On line 15 of the program, the function

scanf

 reads something into its second argument (the first argument in a
parameter list is argument 0, so argument 1 is the second one). The arrow “<-” means “input”. This quantity is
than passed to the function

doMemCpy

 as argument 2, the call occurring on line 17. The arrow “->” means
“passed to”. This argument is then passed to the function

memcpy

 on line 4, as the third argument. This means
that an input number controls how many bytes

memcpy

 copies, and if set incorrectly could cause a buffer over-
flow.

Potential Exploits

Given these problems, let’s see how exploits might work.

1. Unchecked Return Value

This is marked “low”, so it will be difficult to find a security flaw from it. Basically, it requires that the

read

 system
call on line 13 of stackbuffer.c either fail (hence returning –1) or fewer characters than typed. In that case, the number
entered will be larger than the number of characters read, which could cause a problem. The word “semantic” means
that the irregularity is from the semantics of the call (that is, no return value used).

2. Buffer Overflow

This is marked “high” because the source code analyzer asserts it is easy to exploit. It This indicates that user input
enters the program through the

scanf

 call on line 15, which reads data into argument 1. (Arguments are 0-indexed, so
argument 1 is the second argument to

scanf

, &bytes.) This data is then passed as argument 2 to

doMemCpy

(), which
in turn sends the data to argument 2 of

memcpy

(). This allows a user to cause an arbitrary amount of data to be written
to the 64-byte buffer

buf

, potentially overflowing that buffer.

