
 
ECS 153, Introduction to Computer Security Spring Quarter 2005

Last changed on May 26, 2005 at 10:37 pm Page 1 of 1

 

Program

 

Due Date

 

: June 7, 2005

 

Points

 

: 100

The goal of this program is to give you some experience in analyzing software for vulnerabilities. To do this assign-
ment, you need to download the file 

 

lsu.tar

 

 from MyUCDavis, copy it onto a system at the CSIF, and unpack it. Once
on the CSIF, type

 

tar xvf lsu.tar

 

and you will find a directory named 

 

lsu

 

 containing the program 

 

lsu

 

. It consists of several source files. The ones of
interest to us end in “.c”.
This assignment consists of several steps. First, we’ll run a souce code analyzer over the program to find possible
errors. Then, we will examine several.

 

Step #1: Generating the Analysis File

 

Run the program

 

/usr/local/FortifySoftware/SCAS3.1-EE/sourceanalyzer gcc *.c

 

from 

 

within

 

 the 

 

lsu

 

 directory. Save the output in a file; it’s long, and you’ll need to refer to it later.
The program 

 

sourceanalyzer

 

 is a tool written by Fortify Software. It analyzes programs for possible vulnerabilities,
and when it finds one, it describes it and gives a trace of the routines involved in an attack exploiting the vulnerability.

 

Step #2: Find some problems

 

Look at the output. You are to choose one flaw from each of the following categories:
• Buffer overflow (pick one marked “high”. Note: do 

 

not

 

 pick the one at util.c(36)!)
• Process control
• Integer overflow
• Race condition: TOCTOU
For each one you selected, describe 

 

in detail

 

 the flow of data that would allow an attacker to exploit the flaw. For
example, for integer overflow, you should say something like this:
1. Attacker passes 2

 

31

 

–1 arguments to program (via main function in file main.c line 25)
2. Program appends 3 more arguments (see main.c line 36)
3. Counter for loop in which the arguments are appended overflows (see main.c lines 34-38)
Of course, this is a made-up example, not one drawn from 

 

lsu

 

. But it gives you the level of detail we want.
Please copy the messages from the run of 

 

sourceanalyzer

 

 describing the vulnerability and the trace of functions and
files below it. Then write your description beneath. You can pick any instance of the type of flaw except for the ones
noted for buffer overflow, above.

 

Step #3: Look at a Limit

 

Now go back to the buffer overflow at util.c(36). It’s the first buffer overflow marked “high” in the output, assuming
you used the command given above. Analyze this report. Is it an exploitable buffer overflow flaw? If so, please
explain exactly where the overflow occurs, and why. If not, please explain why it is not exploitable (or not a vulnera-
bility).

 

Extra Credit

 

(

 

10 points each

 

) State how to fix each of the vulnerabilities you discussed in step 2. Please fix the program files, and
submit them along with your assignment.


