Outline for February 22, 2006

Reading: text, §9.3–9.4

- 1. Greetings and felicitations!
 - a. Puzzle of the day
- 2. Public-Key Cryptography
 - a. Basic idea: 2 keys, one private, one public
 - b. Cryptosystem must satisfy:
 - i. Given public key, computationally infeasible to get private key;
 - ii. Cipher withstands chosen plaintext attack;
 - iii. Encryption, decryption computationally feasible [note: commutativity not required]
 - c. Benefits: can give confidentiality or authentication or both
- 3. Use of public key cryptosystem
 - a. Normally used as key interchange system to exchange secret keys (cheap)
 - b. Then use secret key system (too expensive to use PKC for this)
- 4. RSA
 - a. Provides both authenticity and confidentiality
 - b. Go through algorithm:
 - Idea: $C = M^e \mod n$, $M = C^d \mod n$, with $ed \mod \#(n) = 1$

Proof: $M^{\#(n)} \mod n = 1$ [by Fermat's theorem as generalized by Euler]; follows immediately from *ed* mod #(n) = 1

Public key is (e, n); private key is *d*. Choose n = pq; then #(n) = (p-1)(q-1).

- ^{c.} Example: p = 5, q = 7; then n = 35, #(n) = (5-1)(7-1) = 24. Pick d = 11. Then $ed \mod \#(n) = 1$, so e = 11. To encipher 2, $C = M^e \mod n = 2^{11} \mod 35 = 2048 \mod 35 = 18$, and $M = C^d \mod n = 18^{11} \mod 35 = 2$.
- d. Example: p = 53, q = 61; then n = 3233, #(n) = (53-1)(61-1) = 3120. Pick d = 791. Then e = 71. To encipher M = RENAISSANCE, use the mapping A = 00, B = 01, ..., Z = 25, b = 26. Then: M = RE NA IS SA NC Eb = 1704 1300 0818 1800 1302 0426, so C = (1704)⁷¹ mod 3233 = 3106; etc. = 3106 0100 0931 2691 1984 2927
- 5. Cryptographic Checksums
 - a. Function y = h(x): easy to compute y given x; computationally infeasible to compute x given y
 - b. Variant: given x and y, computationally infeasible to find a second x# such that y = h(x#)
 - c. Keyed vs. keyless