Outline for November 15, 2006

Reading: §9.3

- 1. Greetings and felicitations!
 - a. Puzzle of the day
- 2. Use of public key cryptosystem
 - a. Normally used as key interchange system to exchange secret keys (cheap)
 - b. Then use secret key system (too expensive to use public key cryptosystem for this)

3. RSA

- a. Provides both authenticity and confidentiality
- b. Go through algorithm: Idea: $C = M^e \mod n$, $M = C^d \mod n$, with $ed \mod \Phi(n) = 1$ Proof: $M^{\Phi(n)} \mod n = 1$ [by Fermat's theorem as generalized by Euler]; follows immediately from edmod $\Phi(n) = 1$ Public key is (e, n); private key is d. Choose n = pq; then $\Phi(n) = (p-1)(q-1)$.
- c. Example: p = 5, q = 7; then n = 35, $\Phi(n) = (5-1)(7-1) = 24$. Pick d = 11. Then $ed \mod \Phi(n) = 1$, so e = 11To encipher 2, $C = M^e \mod n = 2^{11} \mod 35 = 2048 \mod 35 = 18$, and $M = C^d \mod n = 18^{11} \mod 35$
- = 2. d. Example: p = 53, q = 61; then n = 3233, $\Phi(n) = (53-1)(61-1) = 3120$. Pick d = 791. Then e = 71To encipher M = RENAISSANCE, use the mapping A = 00, B = 01, ..., Z = 25, b = 26. Then: M = RE NA IS SA NC Eb = 1704 1300 0818 1800 1302 0426 So: $C = (1704)^{71}$ mod 3233 = 3106; etc. = 3106 0100 0931 2691 1984 2927