Lecture 26, May 31

Reading: §22 (*not* 22.6), 26.3, [Nac97]¹

Assignments due: Homework #5, due June 6, 2013 at 11:55pm

Discussion Problem. It has often been said that the only way to decipher a message that has been enciphered using RSA is to factor the modulus *n* used by the cipher. If you were told that an enciphered message was on a computer that you controlled, and that the message was enciphered using RSA with an *n* of 1024 bits (about 309 decimal digits), how would you find the encrypter's private key?

Lecture outline.

- 1. Greetings and Felicitations!
 - a. Review session: Friday, June 7, at 11:00am–12:00pm in room 184 Young (this room!)
- 2. Types of malicious logic (con't)
 - a. Computer worm
 - b. Bacterium, rabbit
 - c. Logic bomb
- 3. Ideal: program to detect malicious logic
 - a. Can be shown: not possible to be precise in most general case
 - b. Can detect all such programs if willing to accept false positives
 - c. Can constrain case enough to locate specific malicious logic
- 4. Defenses
 - a. Type checking (data vs. instructions)
 - b. Limiting rights (sandboxing)
 - c. Limiting sharing
 - d. Preventing or detecting changes to files
 - e. Prevent code from acting beyond specification (proof carrying code)
 - f. Static signature checking
 - g. Behavioral analysis
 - h. Check statistical characteristics of programs
- 5. Network security
 - a. Firewalls
 - b. Network organization, DMZ
 - c. Hiding internal addresses

¹This is available in the Resources area of SmartSite; look in the folder "Handouts"