Security Policies

ECS 153 Spring Quarter 2021 Module 8

Security Policy

- Policy partitions system states into:
 - Authorized (secure)
 - These are states the system can enter
 - Unauthorized (nonsecure)
 - If the system enters any of these states, it's a security violation
- Secure system
 - Starts in authorized state
 - Never enters unauthorized state

Confidentiality

- X set of entities, I information
- I has the confidentiality property with respect to X if no x ∈ X can obtain information from I
- I can be disclosed to others
- Example:
 - *X* set of students
 - I final exam answer key
 - I is confidential with respect to X if students cannot obtain final exam answer key

Integrity

- X set of entities, I information
- I has the integrity property with respect to X if all x ∈ X trust information in I
- Types of integrity:
 - Trust I, its conveyance and protection (data integrity)
 - I information about origin of something or an identity (origin integrity, authentication)
 - I resource: means resource functions as it should (assurance)

Availability

- X set of entities, I resource
- I has the availability property with respect to X if all $x \in X$ can access I
- Types of availability:
 - Traditional: x gets access or not
 - Quality of service: promised a level of access (for example, a specific level of bandwidth); x meets it or not, even though some access is achieved

Policy Models

- Abstract description of a policy or class of policies
- Focus on points of interest in policies
 - Security levels in multilevel security models
 - Separation of duty in Clark-Wilson model
 - Conflict of interest in Chinese Wall model

Mechanisms

- Entity or procedure that enforces some part of the security policy
 - Access controls (like bits to prevent someone from reading a homework file)
 - Disallowing people from bringing CDs and floppy disks into a computer facility to control what is placed on systems

Question

- Policy disallows cheating
 - Includes copying homework, with or without permission
- CS class has students do homework on computer
- Anne forgets to read-protect her homework file
- Bill copies it
- Who breached security?
 - Anne, Bill, or both?

Answer Part 1

- Bill clearly breached security
 - Policy forbids copying homework assignment
 - Bill did it
 - System entered unauthorized state (Bill having a copy of Anne's assignment)
- If not explicit in computer security policy, certainly implicit
 - Not credible that a unit of the university allows something that the university as a whole forbids, unless the unit explicitly says so

Answer Part 2

- Anne didn't protect her homework
 - Not required by security policy
- She didn't breach security
- If policy said students had to read-protect homework files, then Anne did breach security
 - She didn't do this

Types of Security Policies

- Military (governmental) security policy
 - Policy primarily protecting confidentiality
- Commercial security policy
 - Policy primarily protecting integrity
- Confidentiality policy
 - Policy protecting only confidentiality
- Integrity policy
 - Policy protecting only integrity

Integrity and Transactions

- Begin in consistent state
 - "Consistent" defined by specification
- Perform series of actions (transaction)
 - Actions cannot be interrupted
 - If actions complete, system in consistent state
 - If actions do not complete, system reverts to a consistent state

Trust

Administrator installs patch

- 1. Trusts patch came from vendor, not tampered with in transit
- 2. Trusts vendor tested patch thoroughly
- 3. Trusts vendor's test environment corresponds to local environment
- 4. Trusts patch is installed correctly

Trust in Formal Verification

- Gives formal mathematical proof that given input i, program P produces output o as specified
- Suppose a security-related program S formally verified to work with operating system O
- What are the assumptions?

Trust in Formal Methods

- 1. Proof has no errors
 - Bugs in automated theorem provers
- 2. Preconditions hold in environment in which S is to be used
- 3. S transformed into executable S' whose actions follow source code
 - Compiler bugs, linker/loader/library problems
- 4. Hardware executes S' as intended
 - Hardware bugs (Pentium f00f bug, for example)

Types of Access Control

- Discretionary Access Control (DAC, IBAC)
 - Individual user sets access control mechanism to allow or deny access to an object
- Mandatory Access Control (MAC)
 - System mechanism controls access to object, and individual cannot alter that access
- Originator Controlled Access Control (ORCON, ORGCON)
 - Originator (creator) of information controls who can access information

Policy Languages

- Express security policies in a precise way
- High-level languages
 - Policy constraints expressed abstractly
- Low-level languages
 - Policy constraints expressed in terms of program options, input, or specific characteristics of entities on system

High-Level Policy Languages

- Constraints expressed independent of enforcement mechanism
- Constraints restrict entities, actions
- Constraints expressed unambiguously
 - Requires a precise language, usually a mathematical, logical, or programminglike language

Example: Ponder

- Security and management policy specification language
- Handles many types of policies
 - Authorization policies
 - Delegation policies
 - Information filtering policies
 - Obligation policies
 - Refrain policies

Entities

- Organized into hierarchical domains
- Network administrators
 - *Domain* is /NetAdmins
 - Subdomain for net admin trainees is
 - /NetAdmins/Trainees
- Routers in LAN
 - Domain is /localnet
 - Subdomain that is a testbed for routers is
 - /localnet/testbed/routers

Authorization Policies

 Allowed actions: netadmins can enable, disable, reconfigure, view configuration of routers

```
inst auth+ switchAdmin {
    subject /NetAdmins;
    target /localnetwork/routers;
    action enable(), disable(), reconfig(), dumpconfig();
}
```

Authorization Policies

Disallowed actions: trainees cannot test performance between 8AM and 5PM

```
inst auth- testOps {
    subject /NetEngineers/trainees;
    target /localnetwork/routers;
    action testperformance();
    when Time.between("0800", "1700");
}
```

Delegation Policies

• Delegated rights: net admins delegate to net engineers the right to enable, disable, reconfigure routers on the router testbed

Information Filtering Policies

 Control information flow: net admins can dump everything from routers between 8PM and 5AM, and config info anytime

```
inst auth+ switchOpsFilter {
    subject    /NetAdmins;
    target    /localnetwork/routers;
    action    dumpconfig(what)
        { in partial = "config"; }
        if (Time.between("2000", "0500")){
            in partial = "all"; }
}
```

Refrain Policies

 Like authorization denial policies, but enforced by the subjects: net engineers cannot send test results to net developers while testing in progress

```
inst refrain testSwitchOps {
    subject s=/NetEngineers;
    target /NetDevelopers;
    action sendTestResults();
    when s.teststate="in progress"
}
```

Obligation Policies

 Must take actions when events occur: on 3rd login failure, net security admins will disable account and log event

```
inst oblig loginFailure {
   on     loginfail(userid, 3);
   subject s=/NetAdmins/SecAdmins;
   target t=/NetAdmins/users ^ (userid);
   do     t.disable() -> s.log(userid);
}
```

Example

 Policy: separation of duty requires 2 different members of Accounting approve check

```
inst auth+ separationOfDuty {
    subject s=/Accountants;
    target t=checks;
    action approve(), issue();
    when s.id <> t.issuerid;
}
```

Low-Level Policy Languages

- Set of inputs or arguments to commands
 - Check or set constraints on system
- Low level of abstraction
 - Need details of system, commands

Example: tripwire

- File scanner that reports changes to file system and file attributes
 - tw.config describes what may change /usr/mab/tripwire +gimnpsu012345678-a
 - Check everything but time of last access ("-a")
 - Database holds previous values of attributes

Example Database Record

```
/usr/mab/tripwire/README 0 ..../. 100600 45763 1 917 10 33242
.gtPvf .gtPvY .gtPvY 0 .ZD4cc0Wr8i21ZKaI..LUOr3
.0fwo5:hf4e4.8TAqd0V4ubv ?..... ....9b3 1M4GX01xbGIX0oVuGo1h15z3
?:Y9jfa04rdzM1q:eqt1APgHk ?.Eb9yo.2zkEh1XKovX1:d0wF0kfAvC
?1M4GX01xbGIX2947jdyrior38h15z3 0
```

• file name, version, bitmask for attributes, mode, inode number, number of links, UID, GID, size, times of creation, last modification, last access, cryptographic checksums

Comments

- System administrators not expected to edit database to set attributes properly
- Checking for changes with tripwire is easy
 - Just run once to create the database, run again to check
- Checking for conformance to policy is harder
 - Need to either edit database file, or (better) set system up to conform to policy, then run tripwire to construct database

Example English Policy

- Computer security policy for academic institution
 - Institution has multiple campuses, administered from central office
 - Each campus has its own administration, and unique aspects and needs
- Deals with electronic communications
 - Policy
 - User Advisories
 - Implementation at University of California Davis

Background

- University of California
 - 10 campuses (including UC Davis), each run by a Chancellor
 - UC Office of the President (UCOP) runs system, and is run by President of University of California
- UCOP issues policies that apply to all campuses
- Campuses implement the policy in a manner consistent with directions from UCOP

Electronic Communications Policy

- Begins with purpose, to whom policy applies
 - Includes email, video, voice, other means
 - Not to printed copies of communications
 - Not to Dept. of Energy labs that UC manages, or to Dept. of Energy employees
- Gives general implementation guidelines

Use of Electronic Communications

- University does not want to deal with contents of these!
 - But all communications relating to University administration are public records
 - Others may be too
- Allowable users
 - Faculty, staff, students, others associated with UC
 - Others authorized by the Chancellors or UCOP
 - Others participating in programs UC sponsors

Allowable Uses

- University business
 - Classes, research, etc.
- Incidental personal use OK
 - But can't interfere with other uses
- Anonymous communications OK
 - But can't use a false identity

Non-Allowable Uses

- Endorsements not OK
- Running personal businesses not OJK
- Illegal activities not OK
 - Must respect intellectual property laws, US DMCA
- Violating University of campus policies or rules not OK
- Users can't put "excessive strain" on resources
 - No spamming, DoD or DDoS attacks

Privacy, Confidentiality

- General rule: respected the same way as is for paper
- Cannot read or disclose without permission of holder, except in specific circumstances
- To do so requires written permission of:
 - A designated Vice Chancellor (campus)
 - A Senior Vice President, Business and Finance (UCOP)

Privacy, Confidentiality

- Written permission not required for:
 - Subpoena or search warrant
 - Emergency
 - But must obtain approval as soon as possible afterwards
 - In all these cases, must notify those affected by the disclosure that the disclosure occurred, and why

Limits of Privacy

- Electronic communications that are public records will not be confidential
- Electronic communications may be on backups
- Electronic communications may be seen during routine system monitoring, etc.
 - Admins instructed to respect privacy, but will report "improper governmental activity"

Security Services, Practices

- Routine monitoring
- Need for authentication
- Need for authorization
- Need for recovery mechanisms
- Need for audit mechanisms
- Other mechanisms to enforce University policy

User Advisories

- These are less formal, give guidelines for the use of electronic communications
 - Show courtesy and consideration as in non-electronic communications
 - Laws about privacy in electronic communications are not as mature as laws about privacy in other areas
 - University provides neither encryption nor authentication
 - Easy to falsify sender

- Acceptable Use Policy
 - Incorporates the UCD Principles of Community
 - Requires respect of rights of others when using electronic communications
 - Use encouraged for education, university business, university-related activities

- UC Davis specific details
 - Only Chancellor-approved charitable activities may use these resources
 - Cannot be used to create hostile environment
 - This includes violating obscenity laws
 - Incidental personal use OK under conditions given in Electronic Communications Policy

- Unacceptable conduct
 - Not protecting passwords for University resources
 - Not respecting copyrights, licenses
 - Violating integrity of these resources
 - Creating malicious logic (worms, viruses, etc.)
 - Allowed if done as part of an academic research or instruction program supervised by academic personnel; and
 - It does not compromise the University's electric communication resource

- Allowed users
 - UCD students, staff, faculty
 - Other UCD academic appointees and affiliated people
 - Such as postdocs and visiting scholars
- People leaving
 - Forwarding email allowed
 - Recipient must agree to return to the University any email about University business

Exceptions Allowing Disclosure

- Required by law;
- Reliable evidence of violation of law, University policies;
- Failure to do so may result in:
 - Significant harm
 - Loss of significant evidence of violations;
 - Significant liability to UC or its community;
- Not doing so hampers University meeting administrative, teaching obligations