
Key Management
ECS 153 Spring Quarter 2021

Module 15

May 10, 2021 ECS 153, Computer Security; Spring Quarter 2021 Slide 1

Notation

• X ® Y : { Z || W } kX,Y
• X sends Y the message produced by concatenating Z and W enciphered by key

kX,Y, which is shared by users X and Y

• A ® T : { Z } kA || { W } kA,T
• A sends T a message consisting of the concatenation of Z enciphered using kA,

A’s key, and W enciphered using kA,T, the key shared by A and T

• r1, r2 nonces (nonrepeating random numbers)

May 10, 2021 ECS 153, Computer Security; Spring Quarter 2021 Slide 2

Session, Interchange Keys

• Alice wants to send a message m to Bob
• Assume public key encryption
• Alice generates a random cryptographic key ks and uses it to encipher m

• To be used for this message only
• Called a session key

• She enciphers ks with Bob;s public key kB
• kB enciphers all session keys Alice uses to communicate with Bob
• Called an interchange key

• Alice sends { m } ks { ks } kB

May 10, 2021 ECS 153, Computer Security; Spring Quarter 2021 Slide 3

Benefits

• Limits amount of traffic enciphered with single key
• Standard practice, to decrease the amount of traffic an attacker can obtain

• Prevents some attacks
• Example: Alice will send Bob message that is either “BUY” or “SELL”. Eve

computes possible ciphertexts { “BUY” } kB and { “SELL” } kB. Eve intercepts
enciphered message, compares, and gets plaintext at once

May 10, 2021 ECS 153, Computer Security; Spring Quarter 2021 Slide 4

Key Exchange Algorithms

• Goal: Alice, Bob get shared key
• Key cannot be sent in clear

• Attacker can listen in
• Key can be sent enciphered, or derived from exchanged data plus data not known to an

eavesdropper
• Alice, Bob may trust third party
• All cryptosystems, protocols publicly known

• Only secret data is the keys, ancillary information known only to Alice and Bob needed to
derive keys

• Anything transmitted is assumed known to attacker

May 10, 2021 ECS 153, Computer Security; Spring Quarter 2021 Slide 5

Symmetric Key Exchange

• Bootstrap problem: how do Alice, Bob begin?
• Alice can’t send it to Bob in the clear!

• Assume trusted third party, Cathy
• Alice and Cathy share secret key kA

• Bob and Cathy share secret key kB

• Use this to exchange shared key ks

May 10, 2021 ECS 153, Computer Security; Spring Quarter 2021 Slide 6

Simple Protocol

Alice Cathy
{ request for session key to Bob } kA

Alice Cathy
{ ks } kA || { ks } kB

Alice Bob
{ ks } kB

May 10, 2021 ECS 153, Computer Security; Spring Quarter 2021 Slide 7

Problems

• How does Bob know he is talking to Alice?
• Replay attack: Eve records message from Alice to Bob, later replays it; Bob

may think he’s talking to Alice, but he isn’t
• Session key reuse: Eve replays message from Alice to Bob, so Bob re-uses

session key

• Protocols must provide authentication and defense against replay

May 10, 2021 ECS 153, Computer Security; Spring Quarter 2021 Slide 8

Needham-Schroeder

Alice Cathy
Alice || Bob || r1

Alice Cathy
{ Alice || Bob || r1 || ks || { Alice || ks } kB } kA

Alice Bob
{ Alice || ks } kB

Alice Bob
{ r2 } ks

Alice Bob
{ r2 – 1 } ks

May 10, 2021 ECS 153, Computer Security; Spring Quarter 2021 Slide 9

Argument: Alice talking to Bob

• Second message
• Enciphered using key only she, Cathy knows

• So Cathy enciphered it
• Response to first message

• As r1 in it matches r1 in first message

• Third message
• Alice knows only Bob can read it

• As only Bob can derive session key from message
• Any messages enciphered with that key are from Bob

May 10, 2021 ECS 153, Computer Security; Spring Quarter 2021 Slide 10

Argument: Bob talking to Alice

• Third message
• Enciphered using key only he, Cathy know

• So Cathy enciphered it
• Names Alice, session key

• Cathy provided session key, says Alice is other party

• Fourth message
• Uses session key to determine if it is replay from Eve

• If not, Alice will respond correctly in fifth message
• If so, Eve can’t decipher r2 and so can’t respond, or responds incorrectly

May 10, 2021 ECS 153, Computer Security; Spring Quarter 2021 Slide 11

Denning-Sacco Modification

• Assumption: all keys are secret
• Question: suppose Eve can obtain session key. How does that affect

protocol?
• In what follows, Eve knows ks

Eve Bob
{ Alice || ks } kB

Eve Bob
{ r2 } ks

Eve Bob
{ r2 – 1 } ks

May 10, 2021 ECS 153, Computer Security; Spring Quarter 2021 Slide 12

Problem and Solution

• In protocol above, Eve impersonates Alice
• Problem: replay in third step
• First in previous slide

• Solution: use time stamp T to detect replay
• Weakness: if clocks not synchronized, may either reject valid

messages or accept replays
• Parties with either slow or fast clocks vulnerable to replay
• Resetting clock does not eliminate vulnerability

May 10, 2021 ECS 153, Computer Security; Spring Quarter 2021 Slide 13

Needham-Schroeder with
Denning-Sacco Modification

Alice Cathy
Alice || Bob || r1

Alice Cathy
{ Alice || Bob || r1 || ks || { Alice || T || ks } kB } kA

Alice Bob
{ Alice || T || ks } kB

Alice Bob
{ r2 } ks

Alice Bob
{ r2 – 1 } ks

May 10, 2021 ECS 153, Computer Security; Spring Quarter 2021 Slide 14

Kerberos

• Authentication system
• Based on Needham-Schroeder with Denning-Sacco modification
• Central server plays role of trusted third party (“Cathy”)

• Ticket
• Issuer vouches for identity of requester of service

• Authenticator
• Identifies sender

May 10, 2021 ECS 153, Computer Security; Spring Quarter 2021 Slide 15

Idea

• User u authenticates to Kerberos server
• Obtains ticket Tu,TGS for ticket granting service (TGS)

• User u wants to use service s:
• User sends authenticator Au, ticket Tu,TGS to TGS asking for ticket for service
• TGS sends ticket Tu,s to user
• User sends Au, Tu,s to server as request to use s

• Details follow

May 10, 2021 ECS 153, Computer Security; Spring Quarter 2021 Slide 16

Ticket

• Credential saying issuer has identified ticket requester
• Example ticket issued to user u for service s

Tu,s = s || { u || u’s address || valid time || ku,s } ks

where:
• ku,s is session key for user and service
• Valid time is interval for which ticket valid
• u’s address may be IP address or something else

• Note: more fields, but not relevant here

May 10, 2021 ECS 153, Computer Security; Spring Quarter 2021 Slide 17

Authenticator

• Credential containing identity of sender of ticket
• Used to confirm sender is entity to which ticket was issued

• Example: authenticator user u generates for service s
Au,s = { u || generation time || kt } ku,s

where:
• kt is alternate session key
• Generation time is when authenticator generated

• Note: more fields, not relevant here

May 10, 2021 ECS 153, Computer Security; Spring Quarter 2021 Slide 18

Protocol

user ASuser || TGS

user AS
{ ku,TGS } ku || Tu,TGS

user TGS
service || Au,TGS || Tu,TGS

user TGS
user || { ku,s } ku,TGS || Tu,s

user service
Au,s || Tu,s

user service
{ t + 1 } ku,s

May 10, 2021 ECS 153, Computer Security; Spring Quarter 2021 Slide 19

Analysis

• First two steps get user ticket to use TGS
• User u can obtain session key only if u knows key shared with AS

• Next four steps show how u gets and uses ticket for service s
• Service s validates request by checking sender (using Au,s) is same as entity

ticket issued to
• Step 6 optional; used when u requests confirmation

May 10, 2021 ECS 153, Computer Security; Spring Quarter 2021 Slide 20

Problems

• Relies on synchronized clocks
• If not synchronized and old tickets, authenticators not cached, replay is

possible

• Tickets have some fixed fields
• Dictionary attacks possible
• Kerberos 4 session keys weak (had much less than 56 bits of randomness);

researchers at Purdue found them from tickets in minutes

May 10, 2021 ECS 153, Computer Security; Spring Quarter 2021 Slide 21

Public Key Key Exchange

• Here interchange keys known
• eA, eB Alice and Bob’s public keys known to all
• dA, dB Alice and Bob’s private keys known only to owner

• Simple protocol
• ks is desired session key

Alice Bob
{ ks } eB

May 10, 2021 ECS 153, Computer Security; Spring Quarter 2021 Slide 22

Problem and Solution

• Vulnerable to forgery or replay
• Because eB known to anyone, Bob has no assurance

that Alice sent message

• Simple fix uses Alice’s private key
• ks is desired session key

Alice Bob
{ { ks } dA } eB

May 10, 2021 ECS 153, Computer Security; Spring Quarter 2021 Slide 23

Notes

• Can include message enciphered with ks
• Assumes Bob has Alice’s public key, and vice versa
• If not, each must get it from public server
• If keys not bound to identity of owner, attacker Eve can launch a man-in-the-

middle attack (next slide; Cathy is public server providing public keys)
• Solution to this (binding identity to keys) discussed later as public key infrastructure (PKI)

May 10, 2021 ECS 153, Computer Security; Spring Quarter 2021 Slide 24

Man-in-the-Middle Attack

Alice Cathysend Bob’s public key

Eve Cathysend Bob’s public key

Eve Cathy
eB

Alice
eE Eve

Alice Bob
{ ks } eE

Eve Bob
{ ks } eB

Eve intercepts request

Eve intercepts message

May 10, 2021 ECS 153, Computer Security; Spring Quarter 2021 Slide 25

Diffie-Hellman

• Compute a common, shared key
• Called a symmetric key exchange protocol

• Based on discrete logarithm problem
• Given integers n, g and prime number p, compute k such that n = gk mod p
• Solutions known for small p
• Solutions computationally infeasible as p grows large

May 10, 2021 ECS 153, Computer Security; Spring Quarter 2021 Slide 26

Algorithm

• Constants: prime p, integer g ≠ 0, 1, p–1
• Known to all participants

• Alice chooses private key kAlice, computes public key KAlice = gkAlice mod p
• Bob chooses private key kBob, computes public key KBob = gkBob mod p
• To communicate with Bob, Anne computes KAlice,Bob = KBob

kAlice mod p
• To communicate with Anne, Bob computes KBob,Alice = KAlice

kBob mod p
• It can be shown KAlice,Bob = KBob,Alice

May 10, 2021 ECS 153, Computer Security; Spring Quarter 2021 Slide 27

Example

• Assume p = 121001 and g = 6981
• Alice chooses kAlice = 526784
• Then KAlice = 698126874 mod 121001 = 22258

• Bob chooses kBob = 5596
• Then KBob = 69815596 mod 121001 = 112706

• Shared key:
• KBob

kAlice mod p = 11270626874 mod 121001 = 78618
• KAlice

kBob mod p = 222585596 mod 121001 = 78618

May 10, 2021 ECS 153, Computer Security; Spring Quarter 2021 Slide 28

Example (Elliptic Curve Version)

• Alice, Bob agree to use the curve y2 = x3 + 4x + 14 mod 2503 and the
point P = (1002, 493); curve has n = 2428 integer points
• Alice chooses kAlice = 1379
• Then KAlice = kAlice P mod p = 1379(1002,493) mod 2503 = (1041,1659)

• Bob chooses kBob = 2011
• Then KBob = kBob P mod p = 2011(1002,493) mod 2503 = (629,548)

• Shared key:
• KBob kAlice mod p = 2011(1041,1659) mod 2503 = (2075,2458)
• KAlice kBob mod p = 1379(629,548) mod 2503 = (2075,2458)

May 10, 2021 ECS 153, Computer Security; Spring Quarter 2021 Slide 29

Key Generation

• Goal: generate keys that are difficult to guess
• Problem statement: given a set of k potential keys, choose one

randomly
• Equivalent to selecting a random number between 0 and k–1 inclusive

• Why is this hard: generating random numbers
• Actually, numbers are usually pseudorandom, that is, generated by an

algorithm

May 10, 2021 ECS 153, Computer Security; Spring Quarter 2021 Slide 30

What is “Random”?

• Sequence of cryptographically random numbers: a sequence of
numbers n1, n2, … such that for any integer k > 0, an observer cannot
predict nk even if all of n1, …, nk–1 are known
• Best: physical source of randomness
• Random pulses
• Electromagnetic phenomena
• Characteristics of computing environment such as disk latency
• Ambient background noise

May 10, 2021 ECS 153, Computer Security; Spring Quarter 2021 Slide 31

What is “Pseudorandom”?

• Sequence of cryptographically pseudorandom numbers: sequence of
numbers intended to simulate a sequence of cryptographically
random numbers but generated by an algorithm
• Very difficult to do this well
• Linear congruential generators [xk = (axk–1 + b) mod n] broken
• Polynomial congruential generators [xk = (ajxk–1

j + … + a1xk–1 a0) mod n] broken
too
• Here, “broken” means next number in sequence can be determined

May 10, 2021 ECS 153, Computer Security; Spring Quarter 2021 Slide 32

Best Pseudorandom Numbers

• Strong mixing function: function of 2 or more inputs with each bit of
output depending on some nonlinear function of all input bits
• Examples: AES, SHA-512, SHA-3
• Use on UNIX-based systems:

(date; ps gaux) | sha512
where “ps gaux” lists all information about all processes on system

May 10, 2021 ECS 153, Computer Security; Spring Quarter 2021 Slide 33

Biometrics

• Physical variations cause slight differences in successive biometric
readings and so is good source of randomness
• This causes randomness in the least significant bits of the data

• Biometrics for generating keys tied to individuals
• Requires: adversary unlikely to determine them, but must be regenerated

consistently
• Represent data as bit string (feature descriptor)
• Transform it in some way
• Generate cryptographic key from this
• Add some randomness so if key compromised, a new and different one can be

created

May 10, 2021 ECS 153, Computer Security; Spring Quarter 2021 Slide 34

Cryptographic Key Infrastructure

• Goal: bind identity to key
• Symmetric: not possible as all keys are shared
• Use protocols to agree on a shared key (see earlier)

• Public key: bind identity to public key
• Crucial as people will use key to communicate with principal whose identity is

bound to key
• Erroneous binding means no secrecy between principals
• Assume principal identified by an acceptable name

May 10, 2021 ECS 153, Computer Security; Spring Quarter 2021 Slide 35

Certificates

• Create token (message) containing
• Identity of principal (here, Alice)
• Corresponding public key eAlice

• Timestamp (when issued)
• Other information (perhaps identity of signer)

signed by trusted authority (here, Cathy)
CAlice = {eAlice || Alice || T } dCathy

May 10, 2021 ECS 153, Computer Security; Spring Quarter 2021 Slide 36

Use

• Bob gets Alice’s certificate
• If he knows Cathy’s public key, he can decipher the certificate

• When was certificate issued?
• Is the principal Alice?

• Now Bob has Alice’s public key

• Problem: Bob needs Cathy’s public key to validate certificate
• Problem pushed “up” a level
• Two approaches: Merkle’s tree, signature chains

May 10, 2021 ECS 153, Computer Security; Spring Quarter 2021 Slide 37

Merkle’s Tree Scheme

• Keep certificates in a file
• Changing any certificate changes the file
• Use crypto hash functions to detect this

• Define hashes recursively
• h is hash function
• Ci is certificate i

• Hash of file (h(1,4) in example)
known to all

h(1,4)

h(1,2) h(3,4)

h(1,1) h(2,2) h(3,3) h(4,4)

C1 C2
C3 C4

May 10, 2021 ECS 153, Computer Security; Spring Quarter 2021 Slide 38

Validation

• To validate C1:
• Compute h(1, 1)
• Obtain h(2, 2)
• Compute h(1, 2)
• Obtain h(3, 4)
• Compute h(1,4)
• Compare to known h(1, 4)

• Need to know hashes of children of nodes on
path that are not computed

• In drawing at left:
• Circle contains what is to be validated
• Ovals are what are to be obtained
• Curved rectangles are what are to be computed

h(1,4)

h(1,2) h(3,4)

h(1,1) h(2,2) h(3,3) h(4,4)

C1 C2 C3 C4

May 10, 2021 ECS 153, Computer Security; Spring Quarter 2021 Slide 39

Details

• f: D´D®D maps bit strings to bit strings
• h: N´N®D maps integers to bit strings
• if i ≥ j, h(i, j) = f(Ci, Cj)
• if i < j, h(i, j) = f(h(i, ë(i+j)/2û), h(ë(i+j)/2û+1, j))

May 10, 2021 ECS 153, Computer Security; Spring Quarter 2021 Slide 40

Problem

• File must be available for validation
• Otherwise, can’t recompute hash at root of tree
• Intermediate hashes would do

• Not practical in most circumstances
• If any public key changed, validation fails unless tree is updated
• This includes compromised certificates as well as legitimate public key

changes
• If copies of tree are widely distributed, a change to one must be reflected by

all

May 10, 2021 ECS 153, Computer Security; Spring Quarter 2021 Slide 41

Certificate Signature Chains

• Create certificate
• Generate hash of certificate
• Encipher hash with issuer’s private key

• Validate
• Obtain issuer’s public key
• Decipher enciphered hash
• Recompute hash from certificate and compare

• Problem: getting issuer’s public key

May 10, 2021 ECS 153, Computer Security; Spring Quarter 2021 Slide 42

X.509 Chains

• Some certificate components in X.509v3:
• Version
• Serial number
• Signature algorithm identifier: hash algorithm
• Issuer’s name; uniquely identifies issuer
• Interval of validity
• Subject’s name; uniquely identifies subject
• Subject’s public key
• Signature: enciphered hash

May 10, 2021 ECS 153, Computer Security; Spring Quarter 2021 Slide 43

X.509 Certificate Validation

• Obtain issuer’s public key
• The one for the particular signature algorithm

• Decipher signature
• Gives hash of certificate

• Recompute hash from certificate and compare
• If they differ, there’s a problem

• Check interval of validity
• This confirms that certificate is current

May 10, 2021 ECS 153, Computer Security; Spring Quarter 2021 Slide 44

Issuers

• Certification Authority (CA): entity that issues certificates
• Multiple issuers pose validation problem
• Alice’s CA is Cathy; Bob’s CA is Don; how can Alice validate Bob’s certificate?
• Have Cathy and Don cross-certify by issuing certificates for each other

May 10, 2021 ECS 153, Computer Security; Spring Quarter 2021 Slide 45

Validation and Cross-Certifying

• Notation: X<<Y>> means X issues certificate for Y
• Certificates:
• Cathy<<Alice>>
• Dan<<Bob>
• Cathy<<Dan>>
• Dan<<Cathy>>

• Alice validates Bob’s certificate
• Alice obtains Cathy<<Dan>>
• Alice uses (known) public key of Cathy to validate Cathy<<Dan>>
• Alice uses Cathy<<Dan>> to validate Dan<<Bob>>

May 10, 2021 ECS 153, Computer Security; Spring Quarter 2021 Slide 46

PGP Chains

• OpenPGP certificates structured into packets
• One public key packet
• Zero or more signature packets

• Public key packet:
• Version (3 or 4; 3 compatible with all versions of PGP, 4 not compatible with

older versions of PGP)
• Creation time
• Validity period (present in version 3 only)
• Public key algorithm, associated parameters
• Public key

May 10, 2021 ECS 153, Computer Security; Spring Quarter 2021 Slide 47

OpenPGP Signature Packet

• Version 3 signature packet
• Version (3)
• Signature type (level of trust)
• Creation time (when next fields hashed)
• Signer’s key identifier (identifies key to encipher hash)
• Public key algorithm (used to encipher hash)
• Hash algorithm
• Part of signed hash (used for quick check)
• Signature (enciphered hash)

• Version 4 packet more complex

May 10, 2021 ECS 153, Computer Security; Spring Quarter 2021 Slide 48

Signing

• Single certificate may have multiple signatures
• Notion of “trust” embedded in each signature
• Range from “untrusted” to “ultimate trust”
• Signer defines meaning of trust level (no standards!)

• All version 4 keys signed by the subject of the certificate
• Called “self-signing”
• Version 3 certificates can be too

May 10, 2021 ECS 153, Computer Security; Spring Quarter 2021 Slide 49

Validating Certificates

• Alice needs to validate Bob’s
OpenPGP cert
• Does not know Fred, Giselle, or Ellen

• Alice gets Giselle’s cert
• Knows Henry slightly, but his signature is

at “casual” level of trust

• Alice gets Ellen’s cert
• Knows Jack, so uses his cert to validate

Ellen’s, then hers to validate Bob’s

Bob

Fred

Giselle

Ellen

Irene

Henry

Jack

Arrows show signatures
Self signatures not shown

May 10, 2021 ECS 153, Computer Security; Spring Quarter 2021 Slide 50

Public Key Infrastructures (PKIs)

• An infrastructure that manages public keys and certificate authorities
• This includes registration authorities and other entities involved in creating

and issuing certificates

May 10, 2021 ECS 153, Computer Security; Spring Quarter 2021 Slide 51

Internet X.509 PKI

• End entity certificate: a certificate issued to entities not authorized to
issue certificates
• Certificate authority certificate: a certificate issued to a CA
• Self-issued: issuer, subject are the same entity
• Self-signed: self-issued certificate in which public key in certificate can be

used to validate that certificate’s digital signature
• Trust anchor: CA that begins a certificate signature chain
• Cross-certificate: certificate for one CA issued by another CA
• Registration authority: entity delegated the registration task by a CA
• CA trusts RA to properly identify, authenticate, validate entity

May 10, 2021 ECS 153, Computer Security; Spring Quarter 2021 Slide 52

Certificate Extensions

• Critical: mandatory accept or reject, depending on content
• If application can’t recognize or process it, certificate rejected

• Non-critical: can be ignored if unrecognized
• All conforming CAs must support the following:
• Authority key identifier: identifies public key used to validate certificate’s

digital signature
• Must not be marked critical

• Subject key identifier: same value of authority key field, but if subject is CA,
this must be present
• Must not be marked critical

May 10, 2021 ECS 153, Computer Security; Spring Quarter 2021 Slide 53

CA Certificate Extension Support

• All conforming CAs must support the following:
• Key usage: describes purposes for which public key can be used

• If certificate used to validate digital signatures on certificates, must be present
• Should be marked critical

• Basic constraints: identifies whether subject is CA if the certificate can be
used to validate another certificate’s digital signature, number of
intermediate certificates that may follow this one in a chain and that are not
self-signed
• Must be critical if certificate used to validate digital signatures of certificates
• May be critical or non-critical otherwise

• Certificate policies: describes policy under which certificate is issued and what
it can be used for
• Should be marked critical

May 10, 2021 ECS 153, Computer Security; Spring Quarter 2021 Slide 54

CA Certificate Extensions

• Authority key identifier eliminates need to try different keys of issuing
CA to determine whether certificate valid
• In earlier versions of Internet PKI, this also indicated applicable policy
• Key usage, certificate policy extensions now do this explicitly

• Key usage makes clear what public key is to be used for
• Before, assumed valid for any purpose, or embedded in issuer’s policy

• Basic constraints limits length of certificate chain beginning here
• Doesn’t include self-signed certificates

May 10, 2021 ECS 153, Computer Security; Spring Quarter 2021 Slide 55

Conforming Applications Certificate
Extensions
• Conforming applications that process certificates must recognize:
• Key usage, certificate policies, basic constraints extensions
• Subject alternative name: another name for subject; must be verified by CA or

RA
• Must be critical

• Name constraints: constrains names in subject, subject alternative name of
non-self-signed certificates following it in certificate chain
• Policy constraints: controls when policy for chain containing this certificate

must be explicit or when policy of issuer need not be same as that of subject
• Must be critical

May 10, 2021 ECS 153, Computer Security; Spring Quarter 2021 Slide 56

Conforming Applications Certificate
Extensions
• Conforming applications that process certificates must recognize:
• Extended key usage: issuer uses this to specify uses of public key beyond

those in the key usage extension
• Inhibit anyPolicy: wildcard (anyPolicy) matches policies only if it occurs in

intermediate self-signed certificate in certificate chain
• Must be critical

• Subject alternative name allows multiple subject names in certificate
• Previous versions allowed only one subject name per certificate

• Extended key usage allows public key to be used in ways not
identified in key usage

May 10, 2021 ECS 153, Computer Security; Spring Quarter 2021 Slide 57

PKI Problems

Basis for any PKI is trust
• Trust that the binding of identity to public key is correct
• Degree of confidence depends on CA or RA

• Trust that appropriate CA issued the certificate
• Also that issuance policies are understood
• Also that implementation of signing, and PKI mechanisms,

• Certificate does not embody authorization
• Identity may, but that is external to PKI

• Trust that no 2 certificates will have same public (and hence private)
key

May 10, 2021 ECS 153, Computer Security; Spring Quarter 2021 Slide 58

Key Revocation

• Certificates invalidated before expiration
• Usually due to compromised key
• May be due to change in circumstance (e.g., someone leaving company)

• Problems
• Entity revoking certificate authorized to do so
• Revocation information circulates to everyone fast enough

• Network delays, infrastructure problems may delay information

May 10, 2021 ECS 153, Computer Security; Spring Quarter 2021 Slide 59

CRLs

• Certificate revocation list lists certificates that are revoked
• X.509: only certificate issuer can revoke certificate
• Added to CRL

• PGP: signers can revoke signatures; owners can revoke certificates, or
allow others to do so
• Revocation message placed in PGP packet and signed
• Flag marks it as revocation message

May 10, 2021 ECS 153, Computer Security; Spring Quarter 2021 Slide 60

