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Notation

• X ® Y : { Z || W } kX,Y
• X sends Y the message produced by concatenating Z and W enciphered by key 

kX,Y, which is shared by users X and Y

• A ® T : { Z } kA || { W } kA,T
• A sends T a message consisting of the concatenation of Z enciphered using kA, 

A’s key, and W enciphered using kA,T, the key shared by A and T

• r1, r2 nonces (nonrepeating random numbers)

May 10, 2021 ECS 153, Computer Security; Spring Quarter 2021 Slide 2



Session, Interchange Keys

• Alice wants to send a message m to Bob
• Assume public key encryption
• Alice generates a random cryptographic key ks and uses it to encipher m

• To be used for this message only
• Called a session key

• She enciphers ks with Bob;s public key kB
• kB enciphers all session keys Alice uses to communicate with Bob
• Called an interchange key

• Alice sends { m } ks { ks } kB

May 10, 2021 ECS 153, Computer Security; Spring Quarter 2021 Slide 3



Benefits

• Limits amount of traffic enciphered with single key
• Standard practice, to decrease the amount of traffic an attacker can obtain

• Prevents some attacks
• Example: Alice will send Bob message that is either “BUY” or “SELL”. Eve 

computes possible ciphertexts { “BUY” } kB and  { “SELL” } kB. Eve intercepts 
enciphered message, compares, and gets plaintext at once
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Key Exchange Algorithms

• Goal: Alice, Bob get shared key
• Key cannot be sent in clear

• Attacker can listen in
• Key can be sent enciphered, or derived from exchanged data plus data not known to an 

eavesdropper
• Alice, Bob may trust third party
• All cryptosystems, protocols publicly known

• Only secret data is the keys, ancillary information known only to Alice and Bob needed to 
derive keys

• Anything transmitted is assumed known to attacker
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Symmetric Key Exchange

• Bootstrap problem: how do Alice, Bob begin?
• Alice can’t send it to Bob in the clear!

• Assume trusted third party, Cathy
• Alice and Cathy share secret key kA

• Bob and Cathy share secret key kB

• Use this to exchange shared key ks
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Simple Protocol

Alice Cathy
{ request for session key to Bob } kA

Alice Cathy
{ ks } kA || { ks } kB

Alice Bob
{ ks } kB
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Problems

• How does Bob know he is talking to Alice?
• Replay attack: Eve records message from Alice to Bob, later replays it; Bob 

may think he’s talking to Alice, but he isn’t
• Session key reuse: Eve replays message from Alice to Bob, so Bob re-uses 

session key

• Protocols must provide authentication and defense against replay
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Needham-Schroeder

Alice Cathy
Alice || Bob || r1

Alice Cathy
{ Alice || Bob || r1 || ks || { Alice || ks } kB } kA

Alice Bob
{ Alice || ks } kB

Alice Bob
{ r2 } ks

Alice Bob
{ r2 – 1 } ks
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Argument: Alice talking to Bob

• Second message
• Enciphered using key only she, Cathy knows

• So Cathy enciphered it
• Response to first message

• As r1 in it matches r1 in first message

• Third message
• Alice knows only Bob can read it

• As only Bob can derive session key from message
• Any messages enciphered with that key are from Bob
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Argument: Bob talking to Alice

• Third message
• Enciphered using key only he, Cathy know

• So Cathy enciphered it
• Names Alice, session key

• Cathy provided session key, says Alice is other party

• Fourth message
• Uses session key to determine if it is replay from Eve

• If not, Alice will respond correctly in fifth message
• If so, Eve can’t decipher r2 and so can’t respond, or responds incorrectly
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Denning-Sacco Modification

• Assumption: all keys are secret
• Question: suppose Eve can obtain session key. How does that affect 

protocol?
• In what follows, Eve knows ks

Eve Bob
{ Alice || ks } kB

Eve Bob
{ r2 } ks

Eve Bob
{ r2 – 1 } ks
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Problem and Solution

• In protocol above, Eve impersonates Alice
• Problem: replay in third step
• First in previous slide

• Solution: use time stamp T to detect replay
• Weakness: if clocks not synchronized, may either reject valid 

messages or accept replays
• Parties with either slow or fast clocks vulnerable to replay
• Resetting clock does not eliminate vulnerability
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Needham-Schroeder with
Denning-Sacco Modification

Alice Cathy
Alice || Bob || r1

Alice Cathy
{ Alice || Bob || r1 || ks || { Alice || T || ks } kB } kA

Alice Bob
{ Alice || T || ks } kB

Alice Bob
{ r2 } ks

Alice Bob
{ r2 – 1 } ks
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Kerberos

• Authentication system
• Based on Needham-Schroeder with Denning-Sacco modification
• Central server plays role of trusted third party (“Cathy”)

• Ticket
• Issuer vouches for identity of requester of service

• Authenticator
• Identifies sender
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Idea

• User u authenticates to Kerberos server
• Obtains ticket Tu,TGS for ticket granting service (TGS)

• User u wants to use service s:
• User sends authenticator Au, ticket Tu,TGS to TGS asking for ticket for service
• TGS sends ticket Tu,s to user
• User sends Au, Tu,s to server as request to use s

• Details follow
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Ticket

• Credential saying issuer has identified ticket requester
• Example ticket issued to user u for service s

Tu,s = s || { u || u’s address || valid time || ku,s } ks

where:
• ku,s is session key for user and service
• Valid time is interval for which ticket valid
• u’s address may be IP address or something else

• Note: more fields, but not relevant here
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Authenticator

• Credential containing identity of sender of ticket
• Used to confirm sender is entity to which ticket was issued

• Example: authenticator user u generates for service s
Au,s = { u || generation time || kt } ku,s

where:
• kt is alternate session key
• Generation time is when authenticator generated

• Note: more fields, not relevant here
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Protocol

user ASuser || TGS

user AS
{ ku,TGS } ku || Tu,TGS

user TGS
service || Au,TGS || Tu,TGS

user TGS
user || { ku,s } ku,TGS || Tu,s

user service
Au,s || Tu,s

user service
{ t + 1 } ku,s
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Analysis

• First two steps get user ticket to use TGS
• User u can obtain session key only if u knows key shared with AS

• Next four steps show how u gets and uses ticket for service s
• Service s validates request by checking sender (using Au,s) is same as entity 

ticket issued to
• Step 6 optional; used when u requests confirmation
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Problems

• Relies on synchronized clocks
• If not synchronized and old tickets, authenticators not cached, replay is 

possible

• Tickets have some fixed fields
• Dictionary attacks possible
• Kerberos 4 session keys weak (had much less than 56 bits of randomness); 

researchers at Purdue found them from tickets in minutes
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Public Key Key Exchange

• Here interchange keys known
• eA, eB Alice and Bob’s public keys known to all
• dA, dB Alice and Bob’s private keys known only to owner

• Simple protocol
• ks is desired session key

Alice Bob
{ ks } eB
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Problem and Solution

• Vulnerable to forgery or replay
• Because eB known to anyone, Bob has no assurance 

that Alice sent message

• Simple fix uses Alice’s private key
• ks is desired session key

Alice Bob
{ { ks } dA } eB
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Notes

• Can include message enciphered with ks
• Assumes Bob has Alice’s public key, and vice versa
• If not, each must get it from public server
• If keys not bound to identity of owner, attacker Eve can launch a man-in-the-

middle attack (next slide; Cathy is public server providing public keys)
• Solution to this (binding identity to keys) discussed later as public key infrastructure (PKI)
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Man-in-the-Middle Attack

Alice Cathysend Bob’s public key

Eve Cathysend Bob’s public key

Eve Cathy
eB

Alice
eE Eve

Alice Bob
{ ks } eE

Eve Bob
{ ks } eB

Eve intercepts request

Eve intercepts message
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Diffie-Hellman

• Compute a common, shared key
• Called a symmetric key exchange protocol

• Based on discrete logarithm problem
• Given integers n, g and prime number p, compute k such that n = gk mod p
• Solutions known for small p
• Solutions computationally infeasible as p grows large
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Algorithm

• Constants: prime p, integer g ≠ 0, 1, p–1
• Known to all participants

• Alice chooses private key kAlice, computes public key KAlice = gkAlice mod p
• Bob chooses private key kBob, computes public key KBob = gkBob mod p
• To communicate with Bob, Anne computes KAlice,Bob = KBob

kAlice mod p
• To communicate with Anne, Bob computes KBob,Alice = KAlice

kBob mod p
• It can be shown KAlice,Bob = KBob,Alice
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Example

• Assume p = 121001 and g = 6981
• Alice chooses kAlice = 526784
• Then KAlice = 698126874 mod 121001 = 22258

• Bob chooses kBob = 5596
• Then KBob = 69815596 mod 121001 = 112706

• Shared key:
• KBob

kAlice mod p = 11270626874 mod 121001 = 78618
• KAlice

kBob mod p = 222585596 mod 121001 = 78618
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Example (Elliptic Curve Version)

• Alice, Bob agree to use the curve y2 = x3 + 4x + 14 mod 2503 and the 
point P = (1002, 493); curve has n = 2428 integer points
• Alice chooses kAlice = 1379
• Then KAlice = kAlice P mod p = 1379(1002,493) mod 2503 = (1041,1659)

• Bob chooses kBob = 2011
• Then KBob = kBob P mod p = 2011(1002,493) mod 2503 = (629,548)

• Shared key:
• KBob kAlice mod p = 2011(1041,1659) mod 2503 = (2075,2458)
• KAlice kBob mod p = 1379(629,548) mod 2503 = (2075,2458)
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Key Generation

• Goal: generate keys that are difficult to guess
• Problem statement: given a set of k potential keys, choose one 

randomly
• Equivalent to selecting a random number between 0 and k–1 inclusive

• Why is this hard: generating random numbers
• Actually, numbers are usually pseudorandom, that is, generated by an 

algorithm
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What is “Random”?

• Sequence of cryptographically random numbers: a sequence of 
numbers n1, n2, … such that for any integer k > 0, an observer cannot 
predict nk even if all of n1, …, nk–1 are known
• Best: physical source of randomness
• Random pulses
• Electromagnetic phenomena
• Characteristics of computing environment such as disk latency
• Ambient background noise
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What is “Pseudorandom”?

• Sequence of cryptographically pseudorandom numbers: sequence of 
numbers intended to simulate a sequence of cryptographically 
random numbers but generated by an algorithm
• Very difficult to do this well
• Linear congruential generators [xk = (axk–1 + b) mod n] broken
• Polynomial congruential generators [xk = (ajxk–1

j + … + a1xk–1 a0) mod n] broken 
too
• Here, “broken” means next number in sequence can be determined

May 10, 2021 ECS 153, Computer Security; Spring Quarter 2021 Slide 32



Best Pseudorandom Numbers

• Strong mixing function: function of 2 or more inputs with each bit of 
output depending on some nonlinear function of all input bits
• Examples: AES, SHA-512, SHA-3
• Use on UNIX-based systems:

(date; ps gaux) | sha512
where “ps gaux” lists all information about all processes on system
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Biometrics

• Physical variations cause slight differences in successive biometric 
readings and so is good source of randomness
• This causes randomness in the least significant bits of the data

• Biometrics for generating keys tied to individuals
• Requires: adversary unlikely to determine them, but must be regenerated 

consistently
• Represent data as bit string (feature descriptor)
• Transform it in some way
• Generate cryptographic key from this
• Add some randomness so if key compromised, a new and different one can be 

created
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Cryptographic Key Infrastructure

• Goal: bind identity to key
• Symmetric: not possible as all keys are shared
• Use protocols to agree on a shared key (see earlier)

• Public key: bind identity to public key
• Crucial as people will use key to communicate with principal whose identity is 

bound to key
• Erroneous binding means no secrecy between principals
• Assume principal identified by an acceptable name
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Certificates

• Create token (message) containing
• Identity of principal (here, Alice)
• Corresponding public key eAlice

• Timestamp (when issued)
• Other information (perhaps identity of signer)

signed by trusted authority (here, Cathy)
CAlice = {eAlice || Alice || T } dCathy
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Use

• Bob gets Alice’s certificate
• If he knows Cathy’s public key, he can decipher the certificate

• When was certificate issued?
• Is the principal Alice?

• Now Bob has Alice’s public key

• Problem: Bob needs Cathy’s public key to validate certificate
• Problem pushed “up” a level
• Two approaches: Merkle’s tree, signature chains
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Merkle’s Tree Scheme

• Keep certificates in a file
• Changing any certificate changes the file
• Use crypto hash functions to detect this

• Define hashes recursively
• h is hash function
• Ci is certificate i

• Hash of file (h(1,4) in example) 
known to all

h(1,4)

h(1,2) h(3,4)

h(1,1) h(2,2) h(3,3) h(4,4)

C1 C2
C3 C4
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Validation

• To validate C1:
• Compute h(1, 1)
• Obtain h(2, 2)
• Compute h(1, 2)
• Obtain h(3, 4)
• Compute h(1,4)
• Compare to known h(1, 4)

• Need to know hashes of children of nodes on 
path that are not computed

• In drawing at left:
• Circle contains what is to be validated
• Ovals are what are to be obtained
• Curved rectangles are what are to be computed

h(1,4)

h(1,2) h(3,4)

h(1,1) h(2,2) h(3,3) h(4,4)

C1 C2 C3 C4
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Details

• f: D´D®D maps bit strings to bit strings
• h: N´N®D maps integers to bit strings
• if i ≥ j, h(i, j) = f(Ci, Cj)
• if i < j, h(i, j) = f(h(i, ë(i+j)/2û), h(ë(i+j)/2û+1, j))
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Problem

• File must be available for validation
• Otherwise, can’t recompute hash at root of tree
• Intermediate hashes would do

• Not practical in most circumstances
• If any public key changed, validation fails unless tree is updated
• This includes compromised certificates as well as legitimate public key 

changes
• If copies of tree are widely distributed, a change to one must be reflected by 

all
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Certificate Signature Chains

• Create certificate
• Generate hash of certificate
• Encipher hash with issuer’s private key

• Validate
• Obtain issuer’s public key
• Decipher enciphered hash
• Recompute hash from certificate and compare

• Problem: getting issuer’s public key
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X.509 Chains

• Some certificate components in X.509v3:
• Version
• Serial number
• Signature algorithm identifier: hash algorithm
• Issuer’s name; uniquely identifies issuer
• Interval of validity
• Subject’s name; uniquely identifies subject
• Subject’s public key
• Signature: enciphered hash
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X.509 Certificate Validation

• Obtain issuer’s public key
• The one for the particular signature algorithm

• Decipher signature
• Gives hash of certificate

• Recompute hash from certificate and compare
• If they differ, there’s a problem

• Check interval of validity
• This confirms that certificate is current
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Issuers

• Certification Authority (CA): entity that issues certificates
• Multiple issuers pose validation problem
• Alice’s CA is Cathy; Bob’s CA is Don; how can Alice validate Bob’s certificate?
• Have Cathy and Don cross-certify by issuing certificates for each other
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Validation and Cross-Certifying

• Notation: X<<Y>> means X issues certificate for Y
• Certificates:
• Cathy<<Alice>>
• Dan<<Bob>
• Cathy<<Dan>>
• Dan<<Cathy>>

• Alice validates Bob’s certificate
• Alice obtains Cathy<<Dan>>
• Alice uses (known) public key of Cathy to validate Cathy<<Dan>>
• Alice uses Cathy<<Dan>> to validate Dan<<Bob>>
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PGP Chains

• OpenPGP certificates structured into packets
• One public key packet
• Zero or more signature packets

• Public key packet:
• Version (3 or 4; 3 compatible with all versions of PGP, 4 not compatible with 

older versions of PGP)
• Creation time
• Validity period (present in version 3 only)
• Public key algorithm, associated parameters
• Public key

May 10, 2021 ECS 153, Computer Security; Spring Quarter 2021 Slide 47



OpenPGP Signature Packet

• Version 3 signature packet
• Version (3)
• Signature type (level of trust)
• Creation time (when next fields hashed)
• Signer’s key identifier (identifies key to encipher hash)
• Public key algorithm (used to encipher hash)
• Hash algorithm
• Part of signed hash (used for quick check)
• Signature (enciphered hash)

• Version 4 packet more complex
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Signing

• Single certificate may have multiple signatures
• Notion of “trust” embedded in each signature
• Range from “untrusted” to “ultimate trust”
• Signer defines meaning of trust level (no standards!)

• All version 4 keys signed by the subject of the certificate
• Called “self-signing”
• Version 3 certificates can be too
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Validating Certificates

• Alice needs to validate Bob’s 
OpenPGP cert
• Does not know Fred, Giselle, or Ellen

• Alice gets Giselle’s cert
• Knows Henry slightly, but his signature is 

at “casual” level of trust

• Alice gets Ellen’s cert
• Knows Jack, so uses his cert to validate 

Ellen’s, then hers to validate Bob’s

Bob

Fred

Giselle

Ellen

Irene

Henry

Jack

Arrows show signatures
Self signatures not shown
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Public Key Infrastructures (PKIs)

• An infrastructure that manages public keys and certificate authorities
• This includes registration authorities and other entities involved in creating 

and issuing certificates
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Internet X.509 PKI

• End entity certificate: a certificate issued to entities not authorized to 
issue certificates
• Certificate authority certificate: a certificate issued to a CA
• Self-issued: issuer, subject are the same entity
• Self-signed: self-issued certificate in which public key in certificate can be 

used to validate that certificate’s digital signature
• Trust anchor: CA that begins a certificate signature chain
• Cross-certificate: certificate for one CA issued by another CA
• Registration authority: entity delegated the registration task by a CA
• CA trusts RA to properly identify, authenticate, validate entity 
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Certificate Extensions

• Critical: mandatory accept or reject, depending on content
• If application can’t recognize or process it, certificate rejected

• Non-critical: can be ignored if unrecognized
• All conforming CAs must support the following:
• Authority key identifier: identifies public key used to validate certificate’s 

digital signature
• Must not be marked critical

• Subject key identifier: same value of authority key field, but if subject is CA, 
this must be present
• Must not be marked critical

May 10, 2021 ECS 153, Computer Security; Spring Quarter 2021 Slide 53



CA Certificate Extension Support

• All conforming CAs must support the following:
• Key usage: describes purposes for which public key can be used

• If certificate used to validate digital signatures on certificates, must be present
• Should be marked critical

• Basic constraints: identifies whether subject is CA if the certificate can be 
used to validate another certificate’s digital signature, number of 
intermediate certificates that may follow this one in a chain and that are not 
self-signed
• Must be critical if certificate used to validate digital signatures of certificates
• May be critical or non-critical otherwise

• Certificate policies: describes policy under which certificate is issued and what 
it can be used for
• Should be marked critical
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CA Certificate Extensions

• Authority key identifier eliminates need to try different keys of issuing 
CA to determine whether certificate valid
• In earlier versions of Internet PKI, this also indicated applicable policy
• Key usage, certificate policy extensions now do this explicitly

• Key usage makes clear what public key is to be used for
• Before, assumed valid for any purpose, or embedded in issuer’s policy

• Basic constraints limits length of certificate chain beginning here
• Doesn’t include self-signed certificates
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Conforming Applications Certificate 
Extensions
• Conforming applications that process certificates must recognize:
• Key usage, certificate policies, basic constraints extensions
• Subject alternative name: another name for subject; must be verified by CA or 

RA
• Must be critical

• Name constraints: constrains names in subject, subject alternative name of 
non-self-signed certificates following it in certificate chain
• Policy constraints: controls when policy for chain containing this certificate 

must be explicit or when policy of issuer need not be same as that of subject
• Must be critical
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Conforming Applications Certificate 
Extensions
• Conforming applications that process certificates must recognize:
• Extended key usage: issuer uses this to specify uses of public key beyond 

those in the key usage extension
• Inhibit anyPolicy: wildcard (anyPolicy) matches policies only if it occurs in 

intermediate self-signed certificate in certificate chain
• Must be critical

• Subject alternative name allows multiple subject names in certificate
• Previous versions allowed only one subject name per certificate

• Extended key usage allows public key to be used in ways not 
identified in key usage
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PKI Problems

Basis for any PKI is trust
• Trust that the binding of identity to public key is correct
• Degree of confidence depends on CA or RA

• Trust that appropriate CA issued the certificate
• Also that issuance policies are understood
• Also that implementation of signing, and PKI mechanisms, 

• Certificate does not embody authorization
• Identity may, but that is external to PKI

• Trust that no 2 certificates will have same public (and hence private) 
key
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Key Revocation

• Certificates invalidated before expiration
• Usually due to compromised key
• May be due to change in circumstance (e.g., someone leaving company)

• Problems
• Entity revoking certificate authorized to do so
• Revocation information circulates to everyone fast enough

• Network delays, infrastructure problems may delay information
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CRLs

• Certificate revocation list lists certificates that are revoked
• X.509: only certificate issuer can revoke certificate
• Added to CRL

• PGP: signers can revoke signatures; owners can revoke certificates, or 
allow others to do so
• Revocation message placed in PGP packet and signed
• Flag marks it as revocation message
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