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Problems

• Using cipher requires knowledge of environment, and threats in the 
environment, in which cipher will be used
• Is the set of possible messages small?
• Can an active wiretapper rearrange or change parts of the message?
• Do the messages exhibit regularities that remain after encipherment?
• Can the components of the message be misinterpreted?
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Attack #1: Precomputation

• Set of possible messages M small
• Public key cipher f used
• Idea: precompute set of possible ciphertexts f(M), build table (m, f(m))
• When ciphertext f(m) appears, use table to find m
• Also called forward searches
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Example

• Cathy knows Alice will send Bob one of two messages: enciphered 
BUY, or enciphered SELL
• Using public key eBob, Cathy precomputes

m1 = { BUY } eBob, m2 = { SELL } eBob
• Cathy sees Alice send Bob m2

• Cathy knows Alice sent SELL
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May Not Be Obvious

• Digitized sound
• Seems like far too many possible plaintexts, aa initial calculations suggest 232

such plaintexts
• Analysis of redundancy in human speech reduced this to about 100,000 (≈ 217), 

small enough for precomputation attacks
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Misordered Blocks

• Alice sends Bob message
• nBob = 262631, eBob = 45539, dBob = 235457

• Message is TOMNOTANN (191412 131419 001313)
• Enciphered message is 193459 029062 081227
• Eve intercepts it, rearranges blocks
• Now enciphered message is 081227 029062 193459

• Bob gets enciphered message, deciphers it
• He sees ANNNOTTOM, opposite of what Alice sent
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Solution

• Digitally signing each block won’t stop this attack
• Two approaches:
• Cryptographically hash the entire message and sign it
• Place sequence numbers in each block of message, so recipient can tell 

intended order; then sign each block
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Statistical Regularities

• If plaintext repeats, ciphertext may too
• Example using AES-128:
• Input image:

• corresponding output image:

• Note you can still make out the words

• Fix: cascade blocks together (chaining) More details later
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Type Flaw Attacks

• Assume components of messages in protocol have particular meaning
• Example: Otway-Rees:

Alice Bob
n || Alice || Bob || { r1 || n || Alice || Bob } kA

Cathy Bobn || Alice || Bob || { r1 || n || Alice || Bob } kA || 
{ r2 || n || Alice || Bob } kB

Cathy Bob
n || { r1 || ks } kA || { r2 || ks } kB

Alice Bob
n || { r1 || ks } kA
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The Attack

• Ichabod intercepts message from Bob to Cathy in step 2
• Ichabod replays this message, sending it to Bob
• Slight modification: he deletes the cleartext names

• Bob expects n || { r1 || ks } kA || { r2 || ks } kB
• Bob gets n || { r1 || n || Alice || Bob } kA || { r2 || n || Alice || Bob } 

kB
• So Bob sees  n || Alice || Bob as the session key — and Ichabod 

knows this
• When Alice gets her part, she makes the same assumption
• Now Ichabod can read their encrypted traffic
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Solution

• Tag components of cryptographic messages with information about 
what the component is
• But the tags themselves may be confused with data …
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What These Mean

• Use of strong cryptosystems, well-chosen (or random) keys not 
enough to be secure
• Other factors:
• Protocols directing use of cryptosystems
• Ancillary information added by protocols
• Implementation (not discussed here)
• Maintenance and operation (not discussed here)
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Stream, Block Ciphers

• E encipherment function
• Ek(b) encipherment of message b with key k
• In what follows, m = b1b2 …, each bi of fixed length

• Block  cipher
• Ek(m) = Ek(b1)Ek(b2) …

• Stream cipher
• k = k1k2 …
• Ek(m) = Ek1(b1)Ek2(b2) …
• If k1k2 … repeats itself, cipher is periodic and the kength of its period is one 

cycle of k1k2 …
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Example

• AES-128
• bi = 128 bits, k = 128 bits
• Each bi enciphered separately using k
• Block cipher
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Block Ciphers

• Encipher, decipher multiple bits at once
• Each block enciphered independently
• Problem: identical plaintext blocks produce identical ciphertext blocks
• Plaintext image:

• Ciphertext image:
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Solutions

• Insert information about block’s position into the plaintext block, 
then encipher
• Cipher block chaining:
• Exclusive-or current plaintext block with previous ciphertext block:

• c0 = Ek(m0 Å I)
• ci = Ek(miÅ ci–1) for i > 0

where I is the initialization vector

• Example encipherment of image on previous slide:
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Authenticated Encryption

• Transforms message providing confidentiality, integrity, 
authentication simultaneously
• May be associated data that is not to be encrypted
• Called Authenticated Encryption with Associated Data (AEAD)

• An examples:
• Galois Counter Mode (GCM)

• message is part to be encrypted; associated data is part not to be 
encrypted
• Both are authenticated and integrity-checked; if omitted, treat as having 

length 0
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Galois Counter Mode (GCM)

• Can be implemented efficiently in hardware
• If encrypted, authenticated message is changed, new authentication 

value can be computed with cost proportional to number of changed 
bits
• Allows nonce (initialization vector) of any length
• Parameters
• nonce IV up to 264 bits; 96 bits recommended for efficiency reasons
• message M up to 239 – 28 bits long; ciphertext C same length
• associated data A up to 264 bits long
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GCM Notation

• Authentication value T is t bits long
• M = M0 . . . Mn, each block 128 bits long
• Mn may not be complete block; call its length u bits

• C = C0 . . . Cn, each block 128 bits long; C is LC bits long
• Number of bits in C is the same as number of bits in M

• A = A0 . . . Am, each block 128 bits long; A is LA bits long
• Am may not be complete block; call its length v bits

• 0x, 1y mean x bits of 0 and y bits of 1, respectively
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Multiplication in GF(2128)

/* multiply X and Y to produce Z in GF (2^128 ) */

function GFmultiply(X, Y: integer )

begin

Z := 0

V := X;

for i := 0 to 127 do begin

if Yi = 1 then Z := Z ⊕ V;

V = rightshift(V, 1);

if V127 = 1 then V := V ⊕ R;

end

return Z;

end

• This is written Z = X · Y
• Yi is ith leftmost bit of 

Y, so Y127 is the 
rightmost bit of Y

• rightshift(V, 1) means 
to shift V right 1 bit, 
and bring in 0 from 
the left

• R is bits 11100001
followed by 120 0 bits
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GCM Hash Function

GHASH(H, A, C) computed as follows:
1. X0 = 0
2. for i = 1, . . ., m–1, Xi = (Xi–1⊕ Ai) · H 
3. Xm = (Xm–1⊕ Am) · H 
• Am is right-padded with 0s if not a complete block

4. for i = m+1, . . ., m+n–1, Xi = (Xi–1⊕ Ci) · H 
5. Xm+n = (Xm+n–1⊕ Cn) · H 
• Cn is right-padded with 0s if not a complete block

6. Xm+n+1 = (Xm+n⊕ (LA || LC)) · H 
• LA, LC left-padded with 0 bits to form 64 bits each
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GCM Authenticated Encryption

This computes C and T:
1. H = Ek(0128)
2. If IV is 96 bits, Y0 = IV || 0311; otherwise, Y0 = GHASH(H, 𝜈, IV)
• 𝜈 empty string

3. for i = 1, . . . n, Ii = Ii-1 + 1 mod 232; set Yi = Li-1 || Ii
• Ii-1 right part of Yi-1; treat it as unsigned 32 bit integer; Li-1 left part of Yi-1

4. for i = 1, . . . n–1, Ci = Mi + Ek(Yi)
5. Cn = Mn + MSBu(Ek(Yn))
• MSBu(X) is u most significant (leftmost) bits of X

6. T = MSBt(GHASH(H, A, C) + Ek(Y0))
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GCM Transmission and Decryption

• Send C, T
• To verify, perform steps 1, 2, 6, 3, 4, 5
• When authentication value is computed, compare to sent value
• Note this is done before decrypting the message
• If they do not match, return failure and discard messages
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GCM Analysis

Strength depends on certain properties
• If IV (nonce) reused, part of H can be obtained
• If length of authentication value too short, forgeries can occur and 

from that, H can be determined (enabling undetectable forgeries)
• Under study is whether particular values of H make forging messages 

easier
• Restricting length of IV to 96 bits produces a stronger AEAD cipher 

than when the length is not restricted
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Networks and Cryptography

• ISO/OSI model
• Conceptually, each host communicates with peer at each layer

Physical
Data Link
Network
Transport

Session
Presentation
Application

Physical
Data Link
Network

Physical
Data Link
Network
Transport

Session
Presentation

Application
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Link and End-to-End Protocols

Link Protocol

End-to-End (or E2E) Protocol
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Encryption

• Link encryption
• Each host enciphers message so host at “next hop” can read it
• Message can be read at intermediate hosts

• End-to-end encryption
• Host enciphers message so host at other end of communication can read it
• Message cannot be read at intermediate hosts

May 14, 2021 ECS 153, Computer Security; Spring Quarter 2021 Slide 27



Examples

• SSH protocol
• Messages between client, server are enciphered, and encipherment, 

decipherment occur only at these hosts
• End-to-end protocol

• PPP Encryption Control Protocol
• Host gets message, deciphers it

• Figures out where to forward it
• Enciphers it in appropriate key and forwards it

• Link protocol
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Cryptographic Considerations

• Link encryption
• Each host shares key with neighbor
• Can be set on per-host or per-host-pair basis

• Windsor, stripe, seaview each have own keys
• One key for (windsor, stripe); one for (stripe, seaview); one for (windsor, seaview)

• End-to-end
• Each host shares key with destination
• Can be set on per-host or per-host-pair basis
• Message cannot be read at intermediate nodes
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Traffic Analysis

• Link encryption
• Can protect headers of packets
• Possible to hide source and destination

• Note: may be able to deduce this from traffic flows

• End-to-end encryption
• Cannot hide packet headers

• Intermediate nodes need to route packet
• Attacker can read source, destination
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Example Protocols

• Securing Electronic Mail (OpenPGP, PEM)
• Applications layer protocol
• Start with PEM as goals, design described in detail; then lool at OpenPGP

• Securing Instant Messaging (Signal)
• Applications layer protocol

• Secure Socket Layer (TLS)
• Transport layer protocol

• IP Security (IPSec)
• Network layer protocol
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Transport Layer Security

• Internet protocol: TLS
• Provides confidentiality, integrity, authentication of endpoints
• Focus on version 1.2

• Old Internet protocol: SSL
• Developed by Netscape for WWW browsers and servers
• Use is deprecated
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TLS Session

• Association between two peers
• May have many associated connections
• Information related to session for each peer:

• Unique session identifier
• Peer’s X.509v3 certificate, if needed
• Compression method
• Cipher spec for cipher and MAC
• “Master secret” of 48 bits shared with peer
• Flag indicating whether this session can be used to start new connection
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TLS Connection

• Describes how data exchanged with peer
• Information for each connection
• Whether a server or client
• Random data for server and client
• Write keys (used to encipher data)
• Write MAC key (used to compute MAC)
• Initialization vectors for ciphers, if needed
• Sequence numbers for server, client
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Structure of TLS

TLS Record Protocol

TLS Handshake
Protocol

TLS Change Cipher
Spec Protocol

TLS Alert
Protocol

TLS Application
Data Protocol

TLS Heartbeat
Extension
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Supporting Cryptogrphy

• All parts of TLS use them
• Initial phase: public key system exchanges keys
• Messages enciphered using classical ciphers, checksummed using 

cryptographic checksums
• Only certain combinations allowed

• Depends on algorithm for interchange cipher
• Interchange algorithms: RSA, Diffie-Hellman 
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Diffie-Hellman: Types

• Diffie-Hellman: certificate contains D-H parameters, signed by a CA
• DSS or RSA algorithms used to sign

• Ephemeral Diffie-Hellman: DSS or RSA certificate used to sign D-H 
parameters
• Parameters not reused, so not in certificate

• Anonymous Diffie-Hellman: D-H with neither party authenticated
• Use is “strongly discouraged” as it is vulnerable to attacks

• Elliptic curve Diffie-Hellman supports Diffie-Hellman and ephemeral 
Diffie-Hellman

• But not anonymous Diffie-Hellman
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Derivation of Master Secret

• master_secret = PRF(premaster, “master secret”, r1 || r2)
• premaster set by client, ˚sent to server during setup
• r1, r2 random numbers from client, server respectively

• PRF(secret, label, seed) = P_hash(secret, label || seed)
• P_hash(secret, seed) = HMAC_hash(secret || A(1) || seed) ||

HMAC_hash(secret || A(2) || seed) ||
HMAC_hash(secret || A(3) || seed) || …

• Use first 48 bits of output to set PRF

• A(0) = seed, A(i) = HMAC_hash(secret, A(i-1)) for i > 0
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Derivation of Keys

• key_block = PRF(master, “key expansion”, r1 || r2)
• r1, r2 as before

• Break it into blocks of 48 bits
• First two are client, server keys for computing MACs
• Next two are client, server keys used to encipher messages
• Next two are client, server initialization vectors

• Omitted if cipher does not use initialization vector
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MAC for Block

hash(MAC_ws, seq || TLS_comp || TLS_vers || TLS_len || block)
• MAC_ws: MAC write key
• seq: sequence number of block
• TLS_comp: message type
• TLS_vers: TLS version
• TLS_len: length of block
• block: block being sent
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TLS Record Layer

Message

Compressed
blocks

Compressed
blocks,

enciphered,
with MAC

MAC
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Record Protocol Overview

• Lowest layer, taking messages from higher
• Max block size 214 = 16,384 bytes
• Bigger messages split into multiple blocks

• Construction
• Block b compressed; call it bc

• MAC computed for bc
• If MAC key not selected, no MAC computed

• bc, MAC enciphered
• If enciphering key not selected, no enciphering done

• TLS record header prepended
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TLS Handshake Protocol

• Used to initiate connection
• Sets up parameters for record protocol
• 4 rounds

• Upper layer protocol
• Invokes Record Protocol

• Note: what follows assumes client, server using RSA as interchange 
cryptosystem
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Overview of Rounds

1. Create TLS connection between client, server
2. Server authenticates itself
3. Client validates server, begins key exchange
4. Acknowledgments all around
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Handshake Round 1

1. Client Server
{ vC || r1 || s1 || ciphers || comps || extC }

2. Client Server
{ v || r2 || s2 || cipher || comp || ext}

vC Client’s version of TLS
v Highest version of TLS that client, server both understand
r1, r2 nonces (timestamp and 28 random bytes)
s1 Current session id (empty if new session)
s2 Current session id (if s1 empty, new session id)
ciphers Ciphers that client understands
comps Compression algorithms that client understand
cipher Cipher to be used
comp Compression algorithm to be used
extC List of extensions client supports
ext List of extensions server supports (subset of extC)
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Handshake Round 2

3. Client Server
{ certificate chain }

If server not going to authenticate itself, only last message sent
Second step is for Diffie-Hellman with RSA certificate
Third step omitted if server does not need client certificate
KS, kS Server’s Diffie-Hellman public, private keys
ctype Certificate type accepted (by cryptosystem)
sigalgs List of hash, signature algorithm pairs server can use
gca Acceptable certification authorities

4. Client Server
{ p || g || KS || { h(r1 || r2 || p || g || KS) } kS }

5. Client Server{ctype || sigalgs || gca }

6. Client Server
{ server_hello_done }
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Handshake Round 3

8. Client Server
{ pre } KS

pre Premaster secret
KS Server’s public key
kC Client’s private key

9. Client Server{ hash(all previous messages) } kC

7. Client Server{ client_certificate }
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Handshake Round 4

11. Client Server
{ PRF(master || “client finished” || hash(all previous messages) }

change_cipher_spec
10. Client Server

13. Client Server{ PRF(master || “server finished” || hash(all previous messages) }

change_cipher_spec
12. Client Server

change_cipher_spec Begin using cipher specified
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TLS Change Cipher Spec Protocol

• Send single byte
• In handshake, new parameters considered “pending” until this byte 

received
• Old parameters in use, so cannot just switch to new ones

May 14, 2021 ECS 153, Computer Security; Spring Quarter 2021 Slide 49



TLS Alert Protocol

• Closure alert
• Sender will send no more messages
• Pending data delivered; new messages ignored

• Error alerts
• Warning: connection remains open
• Fatal error: connection torn down as soon as sent or received
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TLS Heartbeat Extension

• Message has 4 fields
• Value indicating message is request
• Length of data in message
• Data of given length
• Random data

• Message sent to peer; peer replies with similar message
• If second field is too large (> 214 bytes), ignore message
• Reply message has same data peer sent, new random data

• When peer sends this for the first time, it sends nothing more until a 
response is received
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TLS Application Data Protocol

• Passes data from application to TLS Record Protocol layer
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Differences Between TLSv2 and SSLv3

• SSLv3 master secret computed differently
master = MD5(premaster || SHA(‘A’ || premaster || r1 || r2) || 

MD5(premaster || SHA(‘BB’ || premaster || r1 || r2) ||
MD5(premaster || SHA(‘CCC’ || premaster || r1 || r2) 

• SSLv3 key block also computed differently
key_block = MD5(master || SHA(‘A’ || master || r1 || r2) || 

MD5(master || SHA(‘BB’ || master || r1 || r2) ||
MD5(master || SHA(‘CCC’ || master || r1 || r2)  || . . .
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Differences Between TLSv2 and SSLv3

SSLv3 MAC for each block computed differently:
hash(MAC_ws || opad ||

hash(MAC_ws || ipad || seq || SSL_comp || SSL_len || block))
• hash: hash function used
• MAC__ws, seq, SSL_comp, SSL_len, block: as for TLS (with obvious 

changes)
• ipad, opad: as for HMAC
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Differences Between TLSv2 and SSLv3

• Verification message (9, above) is different:

• Messages after change cipher spec (11, 13 above) are also different:

9’. Client Server
{ hash(master || opad || hash(all previous messages || master || ipad)) }

11’. Client Server

{ hash(master || opad ||
hash(all previous messages || 0x434C4E54 || master || ipad)) }

13’. Client Server

{ hash(master || opad ||
hash(all previous messages || 0x53525652 || master || ipad)) }
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Differences Between TLSv2 and SSLv3

• Different sets of ciphers
• SSL allows use of RC4, but its use is deprecated
• SSL allows set of ciphers for the Fortezza cryptographic token used by the U.S. 

Department of Defense
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Problems with SSL

• POODLE attack focuses on padding of messages
• In SSL, all but the last byte of the padding are random and so cannot be 

checked

• How padding works (assume block size of b):
• Message ends in a full block: add additional block of padding, and last byte is 

the number of bytes of random padding (b – 1)
• Message ends in part of a block: add random bytes out to last byte, set that to 

number of random bytes (so if block is b – 1 bytes, one padding byte added 
and it is 0)
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The POODLE Attack

• Peer receives incoming ciphertext message c1, …, cn
• Peer decrypts it to m1, …, mn: mi = Dk(ci) ⊕ ci–1, where c0 is 

initialization vector
• Validates by removing padding, computes and checks MAC over remaining 

bytes

• Attacker replaces cn with some earlier block, say cj, j ≠ n
• If last byte of cj is same as cn, message accepted as valid; otherwise, rejected

• So attacker arranges for HTTP messages to end with known number 
of padding bytes
• Then server should accept changed message in at least 1 out of 256 tries
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Example POODLE Attack

• Here’s HTTP request (somewhat simplified):
GET / HT TP/1.1\r\n Cookie: abcdefgh \r\n\r\nxxxx MAC •••••••7

• Attacker cannot see plaintext
• Run Javascript in browser that duplicates cookie block and overwrites 

last block
• It’s enciphered using (for example) 3DES-CBC

• You see enciphered block
• If it is accepted, then plaintext block xor’ed with previous ciphertext block 

ends in 7
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SSL, TLS, and POODLE

• POODLE serious enough that SSL is being discarded in favor of TLS
• TLS not vulnerable, as all padding bytes set to length of padding
• And TLS implementations must check this padding (all of it) for validity before 

accepting messages
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