Rainbow Tables

ECS 153 Spring Quarter 2021

Hellman Time-Space Tradeoft

Originally used to find DES keys
Spy = Xp1,1 = fsp1) = xp1, = flr(xpy1)) = ... = epy = flr(xpyea)) (Spa, €ps)
SP1 = Xp2,1 = fSp2) = xpy, = flr(xpy 1)) = ... = epy = flr(xp,) (Sp2, ep))

SPx = xPpy1=flsp) = xpy o =flr(xpe 1)) = ... = ep=flrxpy 1)) (SPy, €py)

f: A = Cis complementation function
r: C = Ais reduction function, which produces printed output

How It Works

 Attacker wants to find password p given hash h = f(p)

* Attacker sees if it is in list of ep;
* |f there, attacker reconstructs chain; value in next-to-last columnis p

* If not there, attacker computes f(h) and compare it to list of ep;

* If there, attacker reconstructs chain; value in second-to-last column is p
* If not... iterate until p found or determined not to be in table

* Problem: collisions
* If same intermediate values in two chains, the chains match from then on

e Solution: rainbow tables!

Rainbow Tables

e Same as Hellman’s table, except that the reduction function ris
replaced by a family of reduction functions {ry, ..., ry.q }

Sp1 = Xp1,1 =f(sp1) = xp1, = frixpyq)) 2 ..o epy = flrea(xpypq)) (sp1, ep1)
Sp1 = XP,1 =f(spy) = xpy, = flrxpya)) = -0 epy = flrea(xpyeq)) (P2, ep,)
SPk = XPia = fspi) = xpi 2 = flr(xpq)) = ... = epy = flrea(Xpyrq)) (P epy)

e Fewer collisions as intermediate values must also be in the same
column

Thwarting Rainbow Tables

e Use large salts unique to each user
* Attacker has to compute one table per salt
* Linux, FreeBSD, other systems typically ise salts of 128 bits

* Key stretching: iterate password hash value
* Example: hash password| | salt multiple times
 Slows construction of table

e Other issues

* Will not get passwords with symbols outside the range of those used to
construct the rainbow table

* Will not get passwords longer than those used to construct the rainbow table

