Lecture 8: Cryptography Part 2

Date: October 14, 2013

Homework Due: Oct. 18 at 5:00pm

- 1. Perfect secrecy
 - a. When having the ciphertext doesn't tell you anything about the plaintext
- 2. Classical cryptography
 - a. Cæsar cipher; example, with key 'D' (3), RENAISSANCE \rightarrow UHQDLVVDQFH
 - b. Vigenère cipher; example: with key 'DAY', RENAISSANCE \rightarrow UELDIQVALFE
 - c. Problem: key is periodic; try to eliminate it
 - d. Running-key cipher:
 - K = THESECONDCIPHERISAN
 - $M = {\tt THETREASUREISBURIED}$
 - C = MOILVGOFXTMXZFLZAEQ
 - e. One-time pad; C = AZPR; is the key XLHY (DOIT) or XLCY (DONT)
 - f. Data Encryption Standard
 - i. Used in the triple-DES form now
 - g. Advanced Encryption Standard
- 3. Use on a network
 - a. Interchange key
 - b. Session (data encryption) key
- 4. Public-Key Cryptography
 - a. Basic idea: two keys, one public and one private, that are inverses
 - b. Cryptosystem must satisfy:
 - i. Given public key, computationally infeasible to get private key;
 - ii. Cipher withstands chosen plaintext attack;
 - iii. Encryption, decryption can be done quickly using a computer
 - c. Benefits: can give confidentiality or authentication or both
 - d. Use of public key cryptosystem
 - i. Normally used as key interchange system to exchange secret keys (cheap)
 - ii. Then use secret key system (too expensive to use public key cryptosystem for this)
 - e. Common systems: RSA, El Gamal (encryption), Diffie-Hellman (authentication)
- 5. Digital signatures
 - a. Idea: judge can confirm, to the limits of technology, that claimed signer did sign message
 - b. Cryptographic checksum: math function easy to compute given input, very difficult to derive input from output
 - c. Classical: use trusted third party
 - d. Public key: encipher it using private key