Outline for April 24, 2003

- 1. Bell-LaPadula Model
 - a. Apply lattice work
 - i. Set of classes SC is a partially ordered set under relation ≤ with GLB (greatest lower bound), LUB (least upper bound) operators
 - ii. Note: is reflexive, transitive, antisymmetric
 - iii. Examples: (A, C) \leq (A', C') iff A \leq A' and C \subseteq C';
 - $LUB((A, C), (A', C')) = (max(A, A'), C \cup C'), GLB((A, C), (A', C')) = (min(A, A'), C \cap C')$
 - b. Describe simple security condition (no reads up), *-property (no writes down), discretionary security property
 - c. State Basic Security Theorem: if it's secure and transformations follow these rules, it's still secure
 - d. Maximum, current security level
- 4. Example: DG/UX UNIX
 - a. Labels and regions
 - b. Multilevel directories
 - c. File object labels
 - d. MAC tuples
- 5. BLP: formally
 - a. Elements of system: s_i subjects, o_i objects,
 - b. State space $V = B \times M \times F \times H$ where:

B set of current accesses (*i.e.*, access modes each subject has currently to each object); *M* access permission matrix;

F consists of 3 functions: f_s is security level associated with each subject, f_o security level associated with each object, and f_c current security level for each subject

H hierarchy of system objects, functions $h:O \rightarrow P(O)$ with two properties:

If $o_i \neq o_j$, then $h(o_i) \cap h(o_j) = \emptyset$

There is no set $\{o_1, ..., o_k\} \subseteq O$ such that for each $i, o_{i+1} \in h(o_i)$ and $o_{k+1} = o_1$.

- c. Set of requests is *R*
- d. Set of decisions is D
- e. $W \subseteq R \times D \times V \times V$ is motion from one state to another.
- f. System $\Sigma(R, D, W, z_0) \subseteq X \times Y \times Z$ such that $(x, y, z) \in \Sigma(R, D, W, z_0)$ iff $(x_t, y_t, z_t, z_{t-1}) \in W$ for each $i \in T$; latter is an action of system
- g. Theorem: Σ(R, D, W, z₀) satisfies the simple security property for any initial state z₀ that satisfies the simple security property iff W satisfies the following conditions for each action (r_i, d_i, (b', m', f', h'), (b, m, f, h)):
 (i)each (s, o, x) ∈ b' − b satisfies the simple security condition relative to f' (ie, x is not read, or x is read and f_s(s) dominates f_o(o)

(ii)if $(s, o, x) \in b$ does not satisfy the simple security condition relative to f', then $(s, o, x) \notin b'$

- h. Theorem: Σ(R, D, W, z₀) satisfies the *-property relative to S' ⊆ S, for any initial state z₀ that satisfies the *-property relative to S' iff W satisfies the following conditions for each (r_i, d_i, (b', m', f', h'), (b, m, f, h)):
 (i)for each s ∈ S', any (s, o, x) ∈ b' − b satisfies the *-property with respect to f'
 (ii)for each s ∈ S', if (s, o, x) ∈ b does not satisfy the *-property with respect to f', then (s, o, x) ∉ b'
- i. Theorem: Σ(R, D, W, z₀) satisfies the ds-property iff the initial state z₀ satisfies the ds-property and W satisfies the following conditions for each action (r_i, d_i, (b', m', f', h'), (b, m, f, h)):
 (i)if (s, o, x) ∈ b' − b, then x ∈ m'[s, o];
 (ii)if (s, o, x) ∈ b and x ∉ m'[s, o] then (s, o, x) ∉ b'
- j. Basic Security Theorem: A system $\Sigma(R, D, W, z_0)$ is secure iff z_0 is a secure state and *W* satisfies the conditions of the above three theorems for each action.