Outline for April 21, 2005

1. Policy

- a. Policy languages: high level, low level
- 2. Bell-LaPadula Model (security classifications only)
 - a. Go through security clearance, classification
 - b. Describe simple security condition (no reads up), *-property (no writes down), discretionary security property
 - c. State Basic Security Theorem: if it's secure and transformations follow these rules, it's still secure
- 3. Bell-LaPadula Model (security levels)
 - a. Go through security clearance, categories, levels
- 4. Lattice models
 - a. Poset, \leq the relation
 - b. Reflexive, antisymmetric, transitive
 - c. Greatest lower bound, least upper bound
 - d. Example with complex numbers
- 5. Bell-LaPadula Model
 - a. Apply lattice work
 - i. Set of classes SC is a partially ordered set under relation ≤ with GLB (greatest lower bound), LUB (least upper bound) operators
 - ii. Note: is reflexive, transitive, antisymmetric
 - iii. Examples: (A, C) \leq (A', C') iff A \leq A' and C \subseteq C'; LUB((A, C), (A', C')) = (max(A, A'), C \cup C'), GLB((A, C), (A', C')) = (min(A, A'), C \cap C')
 - b. Describe simple security condition (no reads up), *-property (no writes down), discretionary security property
 - c. State Basic Security Theorem: if it's secure and transformations follow these rules, it's still secure
 - d. Maximum, current security level
- 6. Example: DG/UX UNIX
 - a. Labels and regions
 - b. Multilevel directories
 - c. File object labels
 - d. MAC tuples
- 7. BLP: formally
 - a. Elements of system: s_i subjects, o_i objects
 - b. State space $V = B \times M \times F \times H$ where:
 - *B* set of current accesses (i.e., access modes each subject has currently to each object);
 - *M* access permission matrix;

F consists of 3 functions: f_s is security level associated with each subject, f_o security level associated with each object, and f_c current security level for each subject

H hierarchy of system objects, functions *h*: $O \rightarrow P(O)$ with two properties:

If $o_i \neq o_j$, then $h(o_i) \cap h(o_j) = \emptyset$

There is no set $\{o_1, ..., o_k\} \subseteq O$ such that for each $i, o_{i+1} \in h(o_i)$ and $o_{k+1} = o_1$.

- c. Set of requests is *R*
- d. Set of decisions is D
- e. $W \subseteq R \times D \times V \times V$ is motion from one state to another.
- f. System $\Sigma(R, D, W, z_0) \subseteq X \times Y \times Z$ such that $(x, y, z) \in \Sigma(R, D, W, z_0)$ iff $(x_t, y_t, z_t, z_{t-1}) \in W$ for each $i \in T$; latter is an action of system
- g. Theorem: $\Sigma(R, D, W, z_0)$ satisfies the simple security property for any initial state z_0 that satisfies the simple security property iff *W* satisfies the following conditions for each action $(r_i, d_i, (b', m', f', h'), (b, m, f, h))$:

- i. each $(s, o, x) \in b' b$ satisfies the simple security condition relative to f' (i.e., x is not read, or x is read and $f_s(s)$ dominates $f_o(o)$)
- ii. if $(s, o, x) \in b$ does not satisfy the simple security condition relative to f', then $(s, o, x) \notin b'$
- h. Theorem: $\Sigma(R, D, W, z_0)$ satisfies the *-property relative to $S' \subseteq S$, for any initial state z_0 that satisfies the *property relative to S' iff W satisfies the following conditions for each $(r_i, d_i, (b', m', f', h'), (b, m, f, h))$:
 - i. for each $s \in S'$, any $(s, o, x) \in b' b$ satisfies the *-property with respect to f'
 - ii. for each $s \in S'$, if $(s, o, x) \in b$ does not satisfy the *-property with respect to f', then $(s, o, x) \notin b'$
- i. Theorem: $\Sigma(R, D, W, z_0)$ satisfies the ds-property iff the initial state z_0 satisfies the ds-property and *W* satisfies the following conditions for each action $(r_i, d_i, (b', m', f', h'), (b, m, f, h))$:
 - i. if $(s, o, x) \in b' b$, then $x \in m'[s, o]$;
 - ii. if $(s, o, x) \in b$ and $x \in m'[s, o]$ then $(s, o, x) \notin b'$
- j. Basic Security Theorem: A system $\Sigma(R, D, W, z_0)$ is secure iff z_0 is a secure state and W satisfies the conditions of the above three theorems for each action.
- 8. BLP: formally
 - a. Define ssc-preserving, *-property-preserving, ds-property-preserving
 - b. Define relation $W(\omega)$
 - c. Show conditions under which rules are ssc-preserving, *-property-preserving, ds-property-preserving
 - d. Show when adding a state preserves those properties
 - e. Example instantiation: get-read for Multics
- 9. Tranquility
 - a. Strong tranquility
 - b. Weak tranquility
- 10. System Z and the controversy