Outline for April 26, 2005

- 1. Bell-LaPadula Model (security classifications only)
	- a. Go through security clearance, classification
	- b. Describe simple security condition (no reads up), *-property (no writes down), discretionary security property
	- c. State Basic Security Theorem: if it's secure and transformations follow these rules, it's still secure
- 2. Bell-LaPadula Model (security levels)
	- a. Go through security clearance, categories, levels
- 3. Lattice models
	- a. Poset, \leq the relation
	- b. Reflexive, antisymmetric, transitive
	- c. Greatest lower bound, least upper bound
	- d. Example with complex numbers
- 4. Bell-LaPadula Model
	- a. Apply lattice work
		- i. Set of classes SC is a partially ordered set under relation \leq with GLB (greatest lower bound), LUB (least upper bound) operators
		- ii. Note: is reflexive, transitive, antisymmetric
		- iii. Examples: $(A, C) \leq (A', C')$ iff $A \leq A'$ and $C \subseteq C'$;
		- LUB((A, C), (A', C')) = (max(A, A'), C ∪ C'), GLB((A, C), (A', C')) = (min(A, A'), C ∩ C')
	- b. Describe simple security condition (no reads up), *-property (no writes down), discretionary security property
	- c. State Basic Security Theorem: if it's secure and transformations follow these rules, it's still secure
	- d. Maximum, current security level
- 5. Example: DG/UX UNIX
	- a. Labels and regions
	- b. Multilevel directories
	- c. File object labels
	- d. MAC tuples
- 6. BLP: formally
	- a. Elements of system: s_i subjects, o_i objects
	- b. State space $V = B \times M \times F \times H$ where:
		- *B* set of current accesses (i.e., access modes each subject has currently to each object); *M* access permission matrix;

F consists of 3 functions: f_s is security level associated with each subject, f_o security level associated with each object, and f_c current security level for each subject

H hierarchy of system objects, functions $h: O \rightarrow P(O)$ with two properties:

If $o_i \neq o_j$, then $h(o_i) \cap h(o_j) = \emptyset$

There is no set $\{o_1, ..., o_k\} \subseteq O$ such that for each *i*, $o_{i+1} \in h(o_i)$ and $o_{k+1} = o_1$.

- c. Set of requests is *R*
- d. Set of decisions is *D*
- e. $W \subseteq R \times D \times V \times V$ is motion from one state to another.
- f. System $\Sigma(R, D, W, z_0) \subseteq X \times Y \times Z$ such that $(x, y, z) \in \Sigma(R, D, W, z_0)$ iff $(x_t, y_t, z_t, z_{t-1}) \in W$ for each $i \in T$; latter is an action of system
- g. Theorem: $\Sigma(R, D, W, z_0)$ satisfies the simple security property for any initial state z_0 that satisfies the simple security property iff *W* satisfies the following conditions for each action $(r_i, d_i, (b', m', f', h'), (b, m, f, h))$:
	- i. each $(s, o, x) \in b' b$ satisfies the simple security condition relative to *f*^{\prime} (i.e., *x* is not read, or *x* is read and $f_s(s)$ dominates $f_o(o)$)
- ii. if $(s, o, x) \in b$ does not satisfy the simple security condition relative to *f*['], then $(s, o, x) \notin b$ [']
- h. Theorem: $\Sigma(R, D, W, z_0)$ satisfies the *-property relative to $S' \subseteq S$, for any initial state z_0 that satisfies the *property relative to *S*^{\prime} iff *W* satisfies the following conditions for each $(r_i, d_i, (b', m', f', h'), (b, m, f, h))$:
	- i. for each $s \in S'$, any $(s, o, x) \in b' b$ satisfies the *-property with respect to f'
	- ii. for each $s \in S'$, if $(s, o, x) \in b$ does not satisfy the *-property with respect to *f*['], then $(s, o, x) \notin b'$
- i. Theorem: $\Sigma(R, D, W, z_0)$ satisfies the ds-property iff the initial state z_0 satisfies the ds-property and *W* satisfies the following conditions for each action $(r_i, d_i, (b', m', f', h'), (b, m, f, h))$:
	- i. if $(s, 0, x) \in b' b$, then $x \in m'[s, 0]$;
	- ii. if $(s, o, x) \in b$ and $x \in m'[s, o]$ then $(s, o, x) \notin b'$
- j. Basic Security Theorem: A system $\Sigma(R, D, W, z_0)$ is secure iff z_0 is a secure state and *W* satisfies the conditions of the above three theorems for each action.
- 7. BLP: formally
	- a. Define ssc-preserving, *-property-preserving, ds-property-preserving
	- b. Define relation *W*(ω)
	- c. Show conditions under which rules are ssc-preserving, *-property-preserving, ds-property-preserving
	- d. Show when adding a state preserves those properties
	- e. Example instantiation: *get-read* for Multics
- 8. Tranquility
	- a. Strong tranquility
	- b. Weak tranquility
- 9. System Z and the controversy