
Lecture 15
October 30, 2024

ECS 235A, Computer and Information SecurityOctober 30, 2024 Slide 1

xterm and NRL Classification

• Time, location unambiguous
• Time: during development
• Location: Support:privileged utilities

• Genesis: ambiguous
• If intentional:

• Lowest level: inadvertent flaw of serialization/aliasing
• If unintentional:

• Lowest level: nonmalicious: other
• At higher levels, parallels that of RISOS

October 30, 2024 ECS 235A, Computer and Information Security Slide 2

xterm and Aslam’s Classification

• Implementation level
• attacker’s process: object installed with incorrect permissions

• attacker’s process can delete file
• xterm: access rights validation error

• xterm doesn’t properly validate file at time of access
• operating system: improper or inadequate serialization error

• deletion, creation should not have been interspersed with access, open
• Note: in absence of explicit decision procedure, all could go into class race

condition

October 30, 2024 ECS 235A, Computer and Information Security Slide 3

The Point

• The schemes lead to ambiguity
• Different researchers may classify the same vulnerability differently for the

same classification scheme

• Not true for Aslam’s, but that misses connections between different
classifications
• xterm is race condition as well as others; Aslam does not show this

October 30, 2024 ECS 235A, Computer and Information Security Slide 4

fingerd and PA Classification

• Implementation level
• fingerd: improper validation
• attacker’s process: improper choice of operand or operation
• operating system: improper isolation of implementation detail

October 30, 2024 ECS 235A, Computer and Information Security Slide 5

fingerd and PA Classification

• Consider higher level of abstraction, where storage space of return
address is object
• operating system: improper change
• fingerd: improper validation

• Because it doesn’t validate the type of instructions to be executed, mistaking data for
valid ones

• Consider even higher level of abstraction, where security-related
value in memory is changing and data executed that should not be
executable
• operating system: improper choice of initial protection domain

October 30, 2024 ECS 235A, Computer and Information Security Slide 6

fingerd and RISOS Classification

• Implementation level
• fingerd: incomplete parameter validation
• attacker’s process: violable prohibition/limit
• operating system: inadequate identification/authentication/authorization

October 30, 2024 ECS 235A, Computer and Information Security Slide 7

fingerd and RISOS Classification

• Consider higher level of abstraction, where storage space of return
address is object
• operating system: asynchronous validation/inadequate serialization
• fingerd: inadequate identification/authentication/authorization

• Consider even higher level of abstraction, where security-related
value in memory is changing and data executed that should not be
executable
• operating system: inadequate identification/authentication/authorization

October 30, 2024 ECS 235A, Computer and Information Security Slide 8

fingerd and NRL Classification

• Time, location unambiguous
• Time: during development
• Location: support: privileged utilities

• Genesis: ambiguous
• Known to be inadvertent flaw
• Parallels that of RISOS

October 30, 2024 ECS 235A, Computer and Information Security Slide 9

fingerd and Aslam Classification

• Implementation level
• fingerd: boundary condition error
• attacker’s process: boundary condition error

• operating system: environmental fault
• If decision procedure not present, could also have been access rights validation errors

October 30, 2024 ECS 235A, Computer and Information Security Slide 10

Standards

• Descriptive databases used to identify vulnerabilities and weaknesses
• Examples:
• Common Vulnerabilities and Exposures (CVE)
• Common Weaknesses and Exposures (CWE)

October 30, 2024 ECS 235A, Computer and Information Security Slide 11

CVE

• Goal: create a standard identification catalogue for vulnerabilities
• So different vendors can identify vulnerabilities by one common identifier
• Created at MITRE Corp.

• Governance
• CVE Board provides input on nature of specific vulnerabilities, determines

whether 2 reported vulnerabilities overlap, and provides general direction
and very high-level management
• Numbering Authorities assign CVE numbers within a distinct scope, such as

for a particular vendor
• CVE Numbers: CVE-year-number
• Number begins at 1 each year, and is at least 4 digits

October 30, 2024 ECS 235A, Computer and Information Security Slide 12

Structure of Entry

Main fields:
• CVE-ID: CVE identifier
• Description: what is the vulnerability
• References: vendor and CERT security advisories
• Date Entry Created: year month day as a string of 8 digits

October 30, 2024 ECS 235A, Computer and Information Security Slide 13

Example: Buffer Overflow in GNU C Library

CVE-ID: CVE-2016-3706
Description: Stack-based buffer overflow in the getaddrinfo function in sysdeps/posix/getaddrinfo.c in the GNU C Library (aka glibc or libc6)
allows remote attackers to cause a denial of service (crash) via vectors involving hostent conversion. NOTE: this vulnerability exists because of
an incomplete fix for CVE-2013-4458
References:
• CONFIRM:https://sourceware.org/bugzilla/show_bug.cgi?id=20010
• CONFIRM:https://sourceware.org/git/gitweb.cgi?p=glibc.git;h=4ab2ab03d4351914ee53248dc5aef4a8c88ff8b9
• CONFIRM:http://www-01.ibm.com/support/docview.wss?uid=swg21995039
• CONFIRM:https://source.android.com/security/bulletin/2017-12-01
• SUSE:openSUSE-SU-2016:1527
• URL:http://lists.opensuse.org/opensuse-updates/2016-06/msg00030.html
• SUSE:openSUSE-SU-2016:1779
• URL:http://lists.opensuse.org/opensuse-updates/2016-07/msg00039.html
• BID:88440
• URL:http://www.securityfocus.com/bid/88440
• BID:102073
• URL:http://www.securityfocus.com/bid/102073
Assigning CNA: N/A
Date Entry Created: 20160330

October 30, 2024 ECS 235A, Computer and Information Security Slide 14

https://sourceware.org/bugzilla/show_bug.cgi?id=20010
https://sourceware.org/git/gitweb.cgi?p=glibc.git;h=4ab2ab03d4351914ee53248dc5aef4a8c88ff8b9
http://www-01.ibm.com/support/docview.wss?uid=swg21995039
https://source.android.com/security/bulletin/2017-12-01
http://lists.opensuse.org/opensuse-updates/2016-06/msg00030.html
http://lists.opensuse.org/opensuse-updates/2016-07/msg00039.html
http://www.securityfocus.com/bid/88440
http://www.securityfocus.com/bid/102073

CVE Use

• CVE database begun in 1999
• Contains some vulnerabilities from before 1999

• Currently over 82,000 entries
• Used by over 150 organizations
• Security vendors such as Symantec, Trend Micro, Tripwire
• Software and system vendors such as Apple, Juniper Networks, Red Hat, IBM
• Other groups such as CERT/CC, U.S. NIST, and internationally

October 30, 2024 ECS 235A, Computer and Information Security Slide 15

CWE

• Database listing weaknesses underlying CVE vulnerabilities
• Developed by CVE list developers, with help from NIST, vulnerabilities

research community

• Organized as a list
• Can also be viewed as a graph as some weaknesses are refinements of others
• Not a tree as some nodes have multiple parents

October 30, 2024 ECS 235A, Computer and Information Security Slide 16

Types of Entries

• Category entry: identifies set of entries with a characteristic of the current entry

• Chain entry: sequence of distinct weaknesses that can be linked together within software
• One weakness can create necessary conditions to enable another weakness to be exploited

• Compound element composite entry: multiple weaknesses that must be present to enable an
exploit

• View entry: view of the CWE database for particular weakness or set of weaknesses.

• Weakness variant entry: weakness described in terms of a particular technology or language

• Weakness base entry: more abstract description of weakness than a weakness variant entry, but
in sufficient detail to lead to specific methods of detection and remediation

• Weakness class: describes weakness independently of any specific language or technology.

October 30, 2024 ECS 235A, Computer and Information Security Slide 17

Examples

• CWE-631, Resource-Specific Weaknesses (a view entry)
• Child: CWE-632, Weaknesses that Affect Files or Directories
• Child: CWE-633, Weaknesses that Affect Memory
• Child: CWE-634, Weaknesses that Affect System Processes

• CWE-680, Integer Overflow to Buffer Overflow (a chain entry)
• Begins with integer overflow (CWE-190)
• Leads to failure to restrict some operations to bounds of buffer (CWE-119)

• CWE-61, UNIX Symbolic Link (Symlink) Following (a composite entry)
• Requires 5 weaknesses to be present before it can be exploited
• CWE-362, CWE-340, CWE-216, CWE-386, CWE-732

October 30, 2024 ECS 235A, Computer and Information Security Slide 18

Formal Verification

• Mathematically verifying that a system satisfies certain constraints
• Preconditions state assumptions about the system
• Postconditions are result of applying system operations to

preconditions, inputs
• Required: postconditions satisfy constraints

October 30, 2024 ECS 235A, Computer and Information Security Slide 19

Penetration Testing

• Testing to verify that a system satisfies certain constraints
• Hypothesis stating system characteristics, environment, and state

relevant to vulnerability
• Result is compromised system state
• Apply tests to try to move system from state in hypothesis to

compromised system state

October 30, 2024 ECS 235A, Computer and Information Security Slide 20

Notes

• Penetration testing is a testing technique, not a verification technique
• It can prove the presence of vulnerabilities, but not the absence of

vulnerabilities

• For formal verification to prove absence, proof and preconditions
must include all external factors
• Realistically, formal verification proves absence of flaws within a particular

program, design, or environment and not the absence of flaws in a computer
system (think incorrect configurations, etc.)

October 30, 2024 ECS 235A, Computer and Information Security Slide 21

Penetration Studies

• Test for evaluating the strengths and effectiveness of all security
controls on system
• Also called tiger team attack or red team attack
• Goal: violate site security policy
• Not a replacement for careful design, implementation, and structured testing
• Tests system in toto, once it is in place

• Includes procedural, operational controls as well as technological ones

October 30, 2024 ECS 235A, Computer and Information Security Slide 22

Goals

• Attempt to violate specific constraints in security and/or integrity
policy
• Implies metric for determining success
• Must be well-defined

• Example: subsystem designed to allow owner to require others to give
password before accessing file (i.e., password protect files)
• Goal: test this control
• Metric: did testers get access either without a password or by gaining

unauthorized access to a password?

October 30, 2024 ECS 235A, Computer and Information Security Slide 23

Goals

• Find some number of vulnerabilities, or vulnerabilities within a period
of time
• If vulnerabilities categorized and studied, can draw conclusions about care

taken in design, implementation, and operation
• Otherwise, list helpful in closing holes but not more

• Example: vendor gets confidential documents, 30 days later publishes
them on web
• Goal: obtain access to such a file; you have 30 days
• Alternate goal: gain access to files; no time limit (a Trojan horse would give

access for over 30 days)

October 30, 2024 ECS 235A, Computer and Information Security Slide 24

Layering of Tests

1. External attacker with no knowledge of system
• Locate system, learn enough to be able to access it

2. External attacker with access to system
• Can log in, or access network servers
• Often try to expand level of access

3. Internal attacker with access to system
• Testers are authorized users with restricted accounts (like ordinary users)
• Typical goal is to gain unauthorized privileges or information

October 30, 2024 ECS 235A, Computer and Information Security Slide 25

Layering of Tests (con’t)

• Studies conducted from attacker’s point of view
• Environment is that in which attacker would function
• If information about a particular layer irrelevant, layer can be skipped
• Example: penetration testing during design, development skips layer 1
• Example: penetration test on system with guest account usually skips layer 2

October 30, 2024 ECS 235A, Computer and Information Security Slide 26

Methodology

• Usefulness of penetration study comes from documentation,
conclusions
• Indicates whether flaws are endemic or not
• It does not come from success or failure of attempted penetration

• Degree of penetration’s success also a factor
• In some situations, obtaining access to unprivileged account may be less

successful than obtaining access to privileged account

October 30, 2024 ECS 235A, Computer and Information Security Slide 27

Flaw Hypothesis Methodology

1. Information gathering
• Become familiar with system’s functioning

2. Flaw hypothesis
• Draw on knowledge to hypothesize vulnerabilities

3. Flaw testing
• Test them out

4. Flaw generalization
• Generalize vulnerability to find others like it

5. (maybe) Flaw elimination
• Testers eliminate the flaw (usually not included)

October 30, 2024 ECS 235A, Computer and Information Security Slide 28

Information Gathering

• Devise model of system and/or components
• Look for discrepancies in components
• Consider interfaces among components

• Need to know system well (or learn quickly!)
• Design documents, manuals help

• Unclear specifications often misinterpreted, or interpreted differently by different
people

• Look at how system manages privileged users

October 30, 2024 ECS 235A, Computer and Information Security Slide 29

Flaw Hypothesizing

• Examine policies, procedures
• May be inconsistencies to exploit
• May be consistent, but inconsistent with design or implementation
• May not be followed

• Examine implementations
• Use models of vulnerabilities to help locate potential problems
• Use manuals; try exceeding limits and restrictions; try omitting steps in

procedures

October 30, 2024 ECS 235A, Computer and Information Security Slide 30

Flaw Hypothesizing (con’t)

• Identify structures, mechanisms controlling system
• These are what attackers will use
• Environment in which they work, and were built, may have introduced errors

• Throughout, draw on knowledge of other systems with similarities
• Which means they may have similar vulnerabilities

• Result is list of possible flaws

October 30, 2024 ECS 235A, Computer and Information Security Slide 31

Flaw Testing

• Figure out order to test potential flaws
• Priority is function of goals

• Example: to find major design or implementation problems, focus on potential system
critical flaws

• Example: to find vulnerability to outside attackers, focus on external access protocols
and programs

• Figure out how to test potential flaws
• Best way: demonstrate from the analysis

• Common when flaw arises from faulty spec, design, or operation
• Otherwise, must try to exploit it

October 30, 2024 ECS 235A, Computer and Information Security Slide 32

Flaw Testing (con’t)

• Design test to be least intrusive as possible
• Must understand exactly why flaw might arise

• Procedure
• Back up system
• Verify system configured to allow exploit

• Take notes of requirements for detecting flaw
• Verify existence of flaw

• May or may not require exploiting the flaw
• Make test as simple as possible, but success must be convincing

• Must be able to repeat test successfully

October 30, 2024 ECS 235A, Computer and Information Security Slide 33

Flaw Generalization

• As tests succeed, classes of flaws emerge
• Example: programs read input into buffer on stack, leading to buffer overflow

attack; others copy command line arguments into buffer on stack Þ these are
vulnerable too

• Sometimes two different flaws may combine for devastating attack
• Example: flaw 1 gives external attacker access to unprivileged account on

system; second flaw allows any user on that system to gain full privileges Þ
any external attacker can get full privileges

October 30, 2024 ECS 235A, Computer and Information Security Slide 34

Flaw Elimination

• Usually not included as testers are not best folks to fix this
• Designers and implementers are

• Requires understanding of context, details of flaw including
environment, and possibly exploit
• Design flaw uncovered during development can be corrected and parts of

implementation redone
• Don’t need to know how exploit works

• Design flaw uncovered at production site may not be corrected fast enough to
prevent exploitation
• So need to know how exploit works

October 30, 2024 ECS 235A, Computer and Information Security Slide 35

Versions

• These supply details the Flaw Hypothesis Methodology omits
• Information Systems Security Assessment Framework (ISSAF)
• Developed by Open Information Systems Security Group

• Open Source Security Testing Methodology Manual (OSSTMM)
• Guide to Information Security Testing and Assessment (GISTA)
• Developed by National Institute for Standards and Technology (NIST)

• Penetration Testing Execution Standard

October 30, 2024 ECS 235A, Computer and Information Security Slide 36

ISSAF

• Three main steps
• Planning and Preparation Step: sets up test, including legal, contractual bases

for it; this includes establishing goals, limits of test
• Assessment Phase: gather information, penetrate systems, find other flaws,

compromise remote entities, maintain access, and cover tracks
• Reporting and Cleaning Up: write report, purge system of all attack tools,

detritus, any other artifacts used or created

• Strength: clear, intuitive structure guiding assessment
• Weakness: lack of emphasis on generalizing new vulnerabilities from

existing ones

October 30, 2024 ECS 235A, Computer and Information Security Slide 37

OSSTMM

• Scope is 3 classes
• COMSEC: communications security class
• PHYSSEC: physical security class
• SPECSEC: spectrum security class

• Each class has 5 channels:
• Human channel: human elements of communication
• Physical channel: physical aspects of security for the class
• Wireless communications channel: communications, signals, emanations occurring

throughout electromagnetic spectrum
• Data networks channel: all wired networks where interaction takes place over cables

and wired network lines
• Telecommunication channel: all telecommunication networks where interaction takes

place over telephone or telephone-like networks

October 30, 2024 ECS 235A, Computer and Information Security Slide 38

OSSTMM (con’t)

• 17 modules to analyze each channel, divided into 4 phases
• Induction: provides legal information, resulting technical restrictions
• Interaction: test scope, relationships among its components
• Inquest: testers uncover specific information about system
• Intervention: tests specific targets, trying to compromise them
These feed back into one another

• Strength: organization of resources, environmental considerations
into classes, channels, modules, phases
• Weakness: lack of emphasis on generalizing new vulnerabilities from

existing ones

October 30, 2024 ECS 235A, Computer and Information Security Slide 39

GISTA

• GISTA has 4 phases:
• Planning, in which testers, management agree on rules, goals
• Discovery, in which testers search system to gather information (especially

identifying and examining targets) and hypothesizing vulnerabilities
• Attack, in which testers see whether hypotheses can be exploited; any

information learned fed back to discovery phase for more hypothesizing
• Reporting, done in parallel with other phases, in which testers create a report

describing what was found and how to mitigate the problems
• Strength: feedback between discovery and attack phases
• Weakness: quite generic, does not provide same discipline of

guidance as others

October 30, 2024 ECS 235A, Computer and Information Security Slide 40

PTES

• 7 phases
• Pre-engagement interaction: testers, clients agree on scope of test, terms, goals
• Intelligence gathering: testers identify potential targets by examining system, public

information
• Thread modeling: testers analyze threats, hypothesize vulnerabilities
• Vulnerability analysis: testers determine which of hypothesized vulnerabilities exist
• Exploitation: testers determine whether identified vulnerabilities can be exploited

(using social engineering as well as technical means)
• Post-exploitation: analyze effects of successful exploitations; try to conceal

exploitations
• Reporting: document actions, results

• Strengths: detailed description of methodology
• Weakness: lack of emphasis on generalizing new vulnerabilities from

existing ones

October 30, 2024 ECS 235A, Computer and Information Security Slide 41

Michigan Terminal System

• General-purpose OS running on IBM 360, 370 systems
• Class exercise: gain access to terminal control structures
• Had approval and support of center staff
• Began with authorized account (level 3)

October 30, 2024 ECS 235A, Computer and Information Security Slide 42

Step 1: Information Gathering

• Learn details of system’s control flow and supervisor
• When program ran, memory split into segments
• 0-4: supervisor, system programs, system state

• Protected by hardware mechanisms
• 5: system work area, process-specific information including privilege level

• Process should not be able to alter this
• 6 on: user process information

• Process can alter these

• Focus on segment 5

October 30, 2024 ECS 235A, Computer and Information Security Slide 43

Step 2: Information Gathering

• Segment 5 protected by virtual memory protection system
• System mode: process can access, alter data in segment 5, and issue calls to

supervisor
• User mode: segment 5 not present in process address space (and so can’t be

modified)

• Run in user mode when user code being executed
• User code issues system call, which in turn issues supervisor call

October 30, 2024 ECS 235A, Computer and Information Security Slide 44

How to Make a Supervisor Call

• System code checks parameters to ensure supervisor accesses authorized
locations only
• Parameters passed as list of addresses (x, x+1, x+2) constructed in user segment
• Address of list (x) passed via register

. . .x

x x+1 x+2

x+2

October 30, 2024 ECS 235A, Computer and Information Security Slide 45

Step 3: Flaw Hypothesis

• Consider switch from user to system mode
• System mode requires supervisor privileges

• Found: a parameter could point to another element in parameter list
• Below: address in location x+1 is that of parameter at x+2
• Means: system or supervisor procedure could alter parameter’s address after checking

validity of old address

. . .x

x x+1 x+2

x+2

October 30, 2024 ECS 235A, Computer and Information Security Slide 46

Step 4: Flaw Testing

• Find a system routine that:
• Used this calling convention;
• Took at least 2 parameters and altered 1
• Could be made to change parameter to any value (such as an address in

segment 5)

• Chose line input routine
• Returns line number, length of line, line read

• Setup:
• Set address for storing line number to be address of line length

October 30, 2024 ECS 235A, Computer and Information Security Slide 47

Step 4: Execution

• System routine validated all parameter addresses
• All were indeed in user segment

• Supervisor read input line
• Line length set to value to be written into segment 5

• Line number stored in parameter list
• Line number was set to be address in segment 5

• When line read, line length written into location address of which was
in parameter list
• So it overwrote value in segment 5

October 30, 2024 ECS 235A, Computer and Information Security Slide 48

Step 5: Flaw Generalization

• Could not overwrite anything in segments 0-4
• Protected by hardware

• Testers realized that privilege level in segment 5 controlled ability to
issue supervisor calls (as opposed to system calls)
• And one such call turned off hardware protection for segments 0-4 …

• Effect: this flaw allowed attackers to alter anything in memory,
thereby completely controlling computer

October 30, 2024 ECS 235A, Computer and Information Security Slide 17-49

Burroughs B6700

• System architecture: based on strict file typing
• Entities: ordinary users, privileged users, privileged programs, OS tasks

• Ordinary users tightly restricted
• Other 3 can access file data without restriction but constrained from compromising

integrity of system
• No assemblers; compilers output executable code
• Data files, executable files have different types

• Only compilers can produce executables
• Writing to executable or its attributes changes its type to data

• Class exercise: obtain status of privileged user

October 30, 2024 ECS 235A, Computer and Information Security Slide 50

Step 1: Information Gathering

• System had tape drives
• Writing file to tape preserved file contents
• Header record indicates file attributes including type

• Data could be copied from one tape to another
• If you change data, it’s still data

October 30, 2024 ECS 235A, Computer and Information Security Slide 51

Step 2: Flaw Hypothesis

• System cannot detect change to executable file if that file is altered
off-line

October 30, 2024 ECS 235A, Computer and Information Security Slide 52

Step 3: Flaw Testing

• Write small program to change type of any file from data to
executable
• Compiled, but could not be used yet as it would alter file attributes, making

target a data file
• Write this to tape

• Write a small utility to copy contents of tape 1 to tape 2
• Utility also changes header record of contents to indicate file was a compiler

(and so could output executables)

October 30, 2024 ECS 235A, Computer and Information Security Slide 53

Creating the Compiler

• Run copy program
• As header record copied, type becomes “compiler”

• Reinstall program as a new compiler
• Write new subroutine, compile it normally, and change machine code

to give privileges to anyone calling it (this makes it data, of course)
• Now use new compiler to change its type from data to executable

• Write third program to call this
• Now you have privileges

October 30, 2024 ECS 235A, Computer and Information Security Slide 54

Corporate Computer System

• Goal: determine whether corporate security measures were effective
in keeping external attackers from accessing system
• Testers focused on policies and procedures
• Both technical and non-technical

October 30, 2024 ECS 235A, Computer and Information Security Slide 55

Step 1: Information Gathering

• Searched Internet
• Got names of employees, officials
• Got telephone number of local branch, and from them got copy of annual

report

• Constructed much of the company’s organization from this data
• Including list of some projects on which individuals were working

October 30, 2024 ECS 235A, Computer and Information Security Slide 56

Step 2: Get Telephone Directory

• Corporate directory would give more needed information about
structure
• Tester impersonated new employee

• Learned two numbers needed to have something delivered off-site: employee number of
person requesting shipment, and employee’s Cost Center number

• Testers called secretary of executive they knew most about
• One impersonated an employee, got executive’s employee number
• Another impersonated auditor, got Cost Center number

• Had corporate directory sent to off-site “subcontractor”

October 30, 2024 ECS 235A, Computer and Information Security Slide 57

Step 3: Flaw Hypothesis

• Controls blocking people giving passwords away not fully
communicated to new employees
• Testers impersonated secretary of senior executive
• Called appropriate office
• Claimed senior executive upset he had not been given names of employees

hired that week
• Got the names

October 30, 2024 ECS 235A, Computer and Information Security Slide 58

Step 4: Flaw Testing

• Testers called newly hired people
• Claimed to be with computer center
• Provided “Computer Security Awareness Briefing” over phone
• During this, learned:

• Types of computer systems used
• Employees’ numbers, logins, and passwords

• Called computer center to get modem numbers
• These bypassed corporate firewalls

• Success

October 30, 2024 ECS 235A, Computer and Information Security Slide 59

Step 5: Flaw Generalization

• Other human (social engineering) methods would get more
information
• Problem here is human
• Inadequate training
• Inadequate validation of claims to be in the company
• Not checking where information is sent
• Not checking where information is came from

October 30, 2024 ECS 235A, Computer and Information Security Slide 60

Debate

• How valid are these tests?
• Not a substitute for good, thorough specification, rigorous design, careful and

correct implementation, meticulous testing
• Very valuable a posteriori testing technique

• Ideally unnecessary, but in practice very necessary

• Finds errors introduced due to interactions with users, environment
• Especially errors from incorrect maintenance and operation
• Examines system, site through eyes of attacker

October 30, 2024 ECS 235A, Computer and Information Security Slide 61

Problems

• Flaw Hypothesis Methodology depends on caliber of testers to
hypothesize and generalize flaws
• Flaw Hypothesis Methodology does not provide a way to examine

system systematically
• Vulnerability classification schemes help here

October 30, 2024 ECS 235A, Computer and Information Security Slide 62

