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xterm and NRL Classification

• Time, location unambiguous
• Time: during development
• Location: Support:privileged utilities

• Genesis: ambiguous
• If intentional:

• Lowest level: inadvertent flaw of serialization/aliasing
• If unintentional:

• Lowest level: nonmalicious: other
• At higher levels, parallels that of RISOS
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xterm and Aslam’s Classification

• Implementation level
• attacker’s process: object installed with incorrect permissions

• attacker’s process can delete file
• xterm: access rights validation error

• xterm doesn’t properly validate file at time of access
• operating system: improper or inadequate serialization error

• deletion, creation should not have been interspersed with access, open
• Note: in absence of explicit decision procedure, all could go into class race 

condition
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The Point

• The schemes lead to ambiguity
• Different researchers may classify the same vulnerability differently for the 

same classification scheme

• Not true for Aslam’s, but that misses connections between different 
classifications
• xterm is race condition as well as others; Aslam does not show this
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fingerd and PA Classification

• Implementation level
• fingerd: improper validation
• attacker’s process: improper choice of operand or operation
• operating system: improper isolation of implementation detail
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fingerd and PA Classification

• Consider higher level of abstraction, where storage space of return 
address is object
• operating system: improper change
• fingerd: improper validation

• Because it doesn’t validate the type of instructions to be executed, mistaking data for 
valid ones

• Consider even higher level of abstraction, where security-related 
value in memory is changing and data executed that should not be 
executable
• operating system: improper choice of initial protection domain
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fingerd and RISOS Classification

• Implementation level
• fingerd: incomplete parameter validation
• attacker’s process: violable prohibition/limit
• operating system: inadequate identification/authentication/authorization
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fingerd and RISOS Classification

• Consider higher level of abstraction, where storage space of return 
address is object
• operating system: asynchronous validation/inadequate serialization
• fingerd: inadequate identification/authentication/authorization

• Consider even higher level of abstraction, where security-related 
value in memory is changing and data executed that should not be 
executable
• operating system: inadequate identification/authentication/authorization
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fingerd and NRL Classification

• Time, location unambiguous
• Time: during development
• Location: support: privileged utilities

• Genesis: ambiguous
• Known to be inadvertent flaw
• Parallels that of RISOS
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fingerd and Aslam Classification

• Implementation level
• fingerd: boundary condition error
• attacker’s process: boundary condition error

• operating system: environmental fault
• If decision procedure not present, could also have been access rights validation errors
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Standards

• Descriptive databases used to identify vulnerabilities and weaknesses
• Examples:
• Common Vulnerabilities and Exposures (CVE)
• Common Weaknesses and Exposures (CWE)
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CVE

• Goal: create a standard identification catalogue for vulnerabilities
• So different vendors can identify vulnerabilities by one common identifier
• Created at MITRE Corp.

• Governance
• CVE Board provides input on nature of specific vulnerabilities, determines 

whether 2 reported vulnerabilities overlap, and provides general direction 
and very high-level management
• Numbering Authorities assign CVE numbers within a distinct scope, such as 

for a particular vendor
• CVE Numbers: CVE-year-number
• Number begins at 1 each year, and is at least 4 digits
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Structure of Entry

Main fields:
• CVE-ID: CVE identifier
• Description: what is the vulnerability
• References: vendor and CERT security advisories
• Date Entry Created: year month day as a string of 8 digits
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Example: Buffer Overflow in GNU C Library

CVE-ID: CVE-2016-3706
Description: Stack-based buffer overflow in the getaddrinfo function in sysdeps/posix/getaddrinfo.c in the GNU C Library (aka glibc or libc6) 
allows remote attackers to cause a denial of service (crash) via vectors involving hostent conversion. NOTE: this vulnerability exists because of 
an incomplete fix for CVE-2013-4458
References:
• CONFIRM:https://sourceware.org/bugzilla/show_bug.cgi?id=20010 
• CONFIRM:https://sourceware.org/git/gitweb.cgi?p=glibc.git;h=4ab2ab03d4351914ee53248dc5aef4a8c88ff8b9 
• CONFIRM:http://www-01.ibm.com/support/docview.wss?uid=swg21995039 
• CONFIRM:https://source.android.com/security/bulletin/2017-12-01 
• SUSE:openSUSE-SU-2016:1527 
• URL:http://lists.opensuse.org/opensuse-updates/2016-06/msg00030.html 
• SUSE:openSUSE-SU-2016:1779 
• URL:http://lists.opensuse.org/opensuse-updates/2016-07/msg00039.html 
• BID:88440 
• URL:http://www.securityfocus.com/bid/88440 
• BID:102073 
• URL:http://www.securityfocus.com/bid/102073
Assigning CNA: N/A
Date Entry Created: 20160330
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CVE Use

• CVE database begun in 1999
• Contains some vulnerabilities from before 1999

• Currently over 82,000 entries
• Used by over 150 organizations
• Security vendors such as Symantec, Trend Micro, Tripwire
• Software and system  vendors such as Apple, Juniper Networks, Red Hat, IBM
• Other groups such as CERT/CC, U.S. NIST, and internationally
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CWE

• Database listing weaknesses underlying CVE vulnerabilities
• Developed by CVE list developers, with help from NIST, vulnerabilities 

research community

• Organized as a list
• Can also be viewed as a graph as some weaknesses are refinements of others
• Not a tree as some nodes have multiple parents
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Types of Entries

• Category entry: identifies set of entries with a characteristic of the current entry

• Chain entry: sequence of distinct weaknesses that can be linked together within software
• One weakness can create necessary conditions to enable another weakness to be exploited

• Compound element composite entry: multiple weaknesses that must be present to enable an 
exploit

• View entry: view of the CWE database for particular weakness or set of weaknesses.

• Weakness variant entry: weakness described in terms of a particular technology or language

• Weakness base entry: more abstract description of weakness than a weakness variant entry, but 
in sufficient detail to lead to specific methods of detection and remediation

• Weakness class: describes weakness independently of any specific language or technology.

October 30, 2024 ECS 235A, Computer and Information Security Slide 17



Examples

• CWE-631, Resource-Specific Weaknesses (a view entry)
• Child: CWE-632, Weaknesses that Affect Files or Directories
• Child: CWE-633, Weaknesses that Affect Memory
• Child: CWE-634, Weaknesses that Affect System Processes

• CWE-680, Integer Overflow to Buffer Overflow (a chain entry)
• Begins with integer overflow (CWE-190)
• Leads to failure to restrict some operations to bounds of buffer (CWE-119)

• CWE-61, UNIX Symbolic Link (Symlink) Following (a composite entry)
• Requires 5 weaknesses to be present before it can be exploited
• CWE-362, CWE-340, CWE-216, CWE-386, CWE-732
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Formal Verification

• Mathematically verifying that a system satisfies certain constraints
• Preconditions state assumptions about the system
• Postconditions are result of applying system operations to 

preconditions, inputs
• Required: postconditions satisfy constraints
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Penetration Testing

• Testing to verify that a system satisfies certain constraints
• Hypothesis stating system characteristics, environment, and state 

relevant to vulnerability
• Result is compromised system state
• Apply tests to try to move system from state in hypothesis to 

compromised system state
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Notes

• Penetration testing is a testing technique, not a verification technique
• It can prove the presence of vulnerabilities, but not the absence of 

vulnerabilities

• For formal verification to prove absence, proof and preconditions 
must include all external factors
• Realistically, formal verification proves absence of flaws within a particular 

program, design, or environment and not the absence of flaws in a computer 
system (think incorrect configurations, etc.)
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Penetration Studies

• Test for evaluating the strengths and effectiveness of all security 
controls on system
• Also called tiger team attack or red team attack
• Goal: violate site security policy
• Not a replacement for careful design, implementation, and structured testing
• Tests system in toto, once it is in place

• Includes procedural, operational controls as well as technological ones

October 30, 2024 ECS 235A, Computer and Information Security Slide 22



Goals

• Attempt to violate specific constraints in security and/or integrity 
policy
• Implies metric for determining success
• Must be well-defined

• Example: subsystem designed to allow owner to require others to give 
password before accessing file (i.e., password protect files)
• Goal: test this control
• Metric: did testers get access either without a password or by gaining 

unauthorized access to a password?

October 30, 2024 ECS 235A, Computer and Information Security Slide 23



Goals

• Find some number of vulnerabilities, or vulnerabilities within a period 
of time
• If vulnerabilities categorized and studied, can draw conclusions about care 

taken in design, implementation, and operation
• Otherwise, list helpful in closing holes but not more

• Example: vendor gets confidential documents, 30 days later publishes 
them on web
• Goal: obtain access to such a file; you have 30 days
• Alternate goal: gain access to files; no time limit (a Trojan horse would give 

access for over 30 days)
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Layering of Tests

1. External attacker with no knowledge of system
• Locate system, learn enough to be able to access it

2. External attacker with access to system
• Can log in, or access network servers
• Often try to expand level of access

3. Internal attacker with access to system
• Testers are authorized users with restricted accounts (like ordinary users)
• Typical goal is to gain unauthorized privileges or information
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Layering of Tests (con’t)

• Studies conducted from attacker’s point of view
• Environment is that in which attacker would function
• If information about a particular layer irrelevant, layer can be skipped
• Example: penetration testing during design, development skips layer 1
• Example: penetration test on system with guest account usually skips layer 2
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Methodology

• Usefulness of penetration study comes from documentation, 
conclusions
• Indicates whether flaws are endemic or not
• It does not come from success or failure of attempted penetration

• Degree of penetration’s success also a factor
• In some situations, obtaining access to unprivileged account may be less 

successful than obtaining access to privileged account
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Flaw Hypothesis Methodology

1. Information gathering
• Become familiar with system’s functioning

2. Flaw hypothesis
• Draw on knowledge to hypothesize vulnerabilities

3. Flaw testing
• Test them out

4. Flaw generalization
• Generalize vulnerability to find others like it

5. (maybe) Flaw elimination
• Testers eliminate the flaw (usually not included)
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Information Gathering

• Devise model of system and/or components
• Look for discrepancies in components
• Consider interfaces among components

• Need to know system well (or learn quickly!)
• Design documents, manuals help

• Unclear specifications often misinterpreted, or interpreted differently by different 
people

• Look at how system manages privileged users
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Flaw Hypothesizing

• Examine policies, procedures
• May be inconsistencies to exploit
• May be consistent, but inconsistent with design or implementation
• May not be followed

• Examine implementations
• Use models of vulnerabilities to help locate potential problems
• Use manuals; try exceeding limits and restrictions; try omitting steps in 

procedures
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Flaw Hypothesizing (con’t)

• Identify structures, mechanisms controlling system
• These are what attackers will use
• Environment in which they work, and were built, may have introduced errors

• Throughout, draw on knowledge of other systems with similarities
• Which means they may have similar vulnerabilities

• Result is list of possible flaws
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Flaw Testing

• Figure out order to test potential flaws
• Priority is function of goals

• Example: to find major design or implementation problems, focus on potential system 
critical flaws

• Example: to find vulnerability to outside attackers, focus on external access protocols 
and programs

• Figure out how to test potential flaws
• Best way: demonstrate from the analysis

• Common when flaw arises from faulty spec, design, or operation
• Otherwise, must try to exploit it
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Flaw Testing (con’t)

• Design test to be least intrusive as possible
• Must understand exactly why flaw might arise

• Procedure
• Back up system
• Verify system configured to allow exploit

• Take notes of requirements for detecting flaw
• Verify existence of flaw

• May or may not require exploiting the flaw
• Make test as simple as possible, but success must be convincing

• Must be able to repeat test successfully
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Flaw Generalization

• As tests succeed, classes of flaws emerge
• Example: programs read input into buffer on stack, leading to buffer overflow 

attack; others copy command line arguments into buffer on stack Þ these are 
vulnerable too

• Sometimes two different flaws may combine for devastating attack
• Example: flaw 1 gives external attacker access to unprivileged account on 

system; second flaw allows any user on that system to gain full privileges Þ 
any external attacker can get full privileges
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Flaw Elimination

• Usually not included as testers are not best folks to fix this
• Designers and implementers are

• Requires understanding of context, details of flaw including 
environment, and possibly exploit
• Design flaw uncovered during development can be corrected and parts of 

implementation redone
• Don’t need to know how exploit works

• Design flaw uncovered at production site may not be corrected fast enough to 
prevent exploitation
• So need to know how exploit works
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Versions

• These supply details the Flaw Hypothesis Methodology omits
• Information Systems Security Assessment Framework (ISSAF)
• Developed by Open Information Systems Security Group

• Open Source Security Testing Methodology Manual (OSSTMM)
• Guide to Information Security Testing and Assessment (GISTA)
• Developed by National Institute for Standards and Technology (NIST)

• Penetration Testing Execution Standard
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ISSAF

• Three main steps
• Planning and Preparation Step: sets up test, including legal, contractual bases 

for it; this includes establishing goals, limits of test
• Assessment Phase: gather information, penetrate systems, find other flaws, 

compromise remote entities, maintain access, and cover tracks
• Reporting and Cleaning Up: write report, purge system of all attack tools, 

detritus, any other artifacts used or created

• Strength: clear, intuitive structure guiding assessment
• Weakness: lack of emphasis on generalizing new vulnerabilities from 

existing ones
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OSSTMM

• Scope is 3 classes
• COMSEC: communications security class
• PHYSSEC: physical security class
• SPECSEC: spectrum security class

• Each class has 5 channels:
• Human channel: human elements of communication
• Physical channel: physical aspects of security for the class
• Wireless communications channel: communications, signals, emanations occurring 

throughout electromagnetic spectrum
• Data networks channel: all wired networks where interaction takes place over cables 

and wired network lines
• Telecommunication channel: all telecommunication networks where interaction takes 

place over telephone or telephone-like networks
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OSSTMM (con’t)

• 17 modules to analyze each channel, divided into 4 phases
• Induction: provides legal information, resulting technical restrictions
• Interaction: test scope, relationships among its components
• Inquest: testers uncover specific information about system
• Intervention: tests specific targets, trying to compromise them
These feed back into one another

• Strength: organization of resources, environmental considerations 
into classes, channels, modules, phases
• Weakness: lack of emphasis on generalizing new vulnerabilities from 

existing ones 
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GISTA

• GISTA has 4 phases:
• Planning, in which testers, management agree on rules, goals
• Discovery, in which testers search system to gather information (especially 

identifying and examining targets) and hypothesizing vulnerabilities
• Attack, in which testers see whether hypotheses can be exploited; any 

information learned fed back to discovery phase for more hypothesizing
• Reporting, done in parallel with other phases, in which testers create a report 

describing what was found and how to mitigate the problems
• Strength: feedback between discovery and attack phases
• Weakness: quite generic, does not provide same discipline of 

guidance as others
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PTES

• 7 phases
• Pre-engagement interaction: testers, clients agree on scope of test, terms, goals
• Intelligence gathering: testers identify potential targets by examining system, public 

information
• Thread modeling: testers analyze threats, hypothesize vulnerabilities
• Vulnerability analysis: testers determine which of hypothesized vulnerabilities exist
• Exploitation: testers determine whether identified vulnerabilities can be exploited 

(using social engineering as well as technical means)
• Post-exploitation: analyze effects of successful exploitations; try to conceal 

exploitations
• Reporting: document actions, results

• Strengths: detailed description of methodology
• Weakness: lack of emphasis on generalizing new vulnerabilities from 

existing ones 
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Michigan Terminal System

• General-purpose OS running on IBM 360, 370 systems
• Class exercise: gain access to terminal control structures
• Had approval and support of center staff
• Began with authorized account (level 3)
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Step 1: Information Gathering

• Learn details of system’s control flow and supervisor
• When program ran, memory split into segments
• 0-4: supervisor, system programs, system state

• Protected by hardware mechanisms
• 5: system work area, process-specific information including privilege level

• Process should not be able to alter this
• 6 on: user process information

• Process can alter these

• Focus on segment 5
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Step 2: Information Gathering

• Segment 5 protected by virtual memory protection system
• System mode: process can access, alter data in segment 5, and issue calls to 

supervisor
• User mode: segment 5 not present in process address space (and so can’t be 

modified)

• Run in user mode when user code being executed
• User code issues system call, which in turn issues supervisor call
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How to Make a Supervisor Call

• System code checks parameters to ensure supervisor accesses authorized 
locations only
• Parameters passed as list of addresses (x, x+1, x+2) constructed in user segment
• Address of list (x) passed via register 

. . .x

x x+1 x+2

x+2
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Step 3: Flaw Hypothesis

• Consider switch from user to system mode
• System mode requires supervisor privileges

• Found: a parameter could point to another element in parameter list
• Below: address in location x+1 is that of parameter at x+2
• Means: system or supervisor procedure could alter parameter’s address after checking 

validity of old address

. . .x

x x+1 x+2

x+2
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Step 4: Flaw Testing

• Find a system routine that:
• Used this calling convention;
• Took at least 2 parameters and altered 1
• Could be made to change parameter to any value (such as an address in 

segment 5)

• Chose line input routine
• Returns line number, length of line, line read

• Setup:
• Set address for storing line number to be address of line length
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Step 4: Execution

• System routine validated all parameter addresses
• All were indeed in user segment

• Supervisor read input line
• Line length set to value to be written into segment 5

• Line number stored in parameter list
• Line number was set to be address in segment 5

• When line read, line length written into location address of which was 
in parameter list
• So it overwrote value in segment 5
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Step 5: Flaw Generalization

• Could not overwrite anything in segments 0-4
• Protected by hardware

• Testers realized that privilege level in segment 5 controlled ability to 
issue supervisor calls (as opposed to system calls)
• And one such call turned off hardware protection for segments 0-4 …

• Effect: this flaw allowed attackers to alter anything in memory, 
thereby completely controlling computer
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Burroughs B6700

• System architecture: based on strict file typing
• Entities: ordinary users, privileged users, privileged programs, OS tasks

• Ordinary users tightly restricted
• Other 3 can access file data without restriction but constrained from compromising 

integrity of system
• No assemblers; compilers output executable code
• Data files, executable files have different types

• Only compilers can produce executables
• Writing to executable or its attributes changes its type to data

• Class exercise: obtain status of privileged user
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Step 1: Information Gathering

• System had tape drives
• Writing file to tape preserved file contents
• Header record indicates file attributes including type

• Data could be copied from one tape to another
• If you change data, it’s still data
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Step 2: Flaw Hypothesis

• System cannot detect change to executable file if that file is altered 
off-line
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Step 3: Flaw Testing

• Write small program to change type of any file from data to 
executable
• Compiled, but could not be used yet as it would alter file attributes, making 

target a data file
• Write this to tape

• Write a small utility to copy contents of tape 1 to tape 2
• Utility also changes header record of contents to indicate file was a compiler 

(and so could output executables)
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Creating the Compiler

• Run copy program
• As header record copied, type becomes “compiler”

• Reinstall program as a new compiler
• Write new subroutine, compile it normally, and change machine code 

to give privileges to anyone calling it (this makes it data, of course)
• Now use new compiler to change its type from data to executable

• Write third program to call this
• Now you have privileges
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Corporate Computer System

• Goal: determine whether corporate security measures were effective 
in keeping external attackers from accessing system
• Testers focused on policies and procedures
• Both technical and non-technical
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Step 1: Information Gathering

• Searched Internet
• Got names of employees, officials
• Got telephone number of local branch, and from them got copy of annual 

report

• Constructed much of the company’s organization from this data
• Including list of some projects on which individuals were working
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Step 2: Get Telephone Directory

• Corporate directory would give more needed information about 
structure
• Tester impersonated new employee

• Learned two numbers needed to have something delivered off-site: employee number of 
person requesting shipment, and employee’s Cost Center number

• Testers called secretary of executive they knew most about
• One impersonated an employee, got executive’s employee number
• Another impersonated auditor, got Cost Center number

• Had corporate directory sent to off-site “subcontractor” 
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Step 3: Flaw Hypothesis

• Controls blocking people giving passwords away not fully 
communicated to new employees
• Testers impersonated secretary of senior executive
• Called appropriate office
• Claimed senior executive upset he had not been given names of employees 

hired that week
• Got the names
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Step 4: Flaw Testing

• Testers called newly hired people
• Claimed to be with computer center
• Provided “Computer Security Awareness Briefing” over phone
• During this, learned:

• Types of computer systems used
• Employees’ numbers, logins, and passwords

• Called computer center to get modem numbers
• These bypassed corporate firewalls

• Success
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Step 5: Flaw Generalization

• Other human (social engineering) methods would get more 
information
• Problem here is human
• Inadequate training
• Inadequate validation of claims to be in the company
• Not checking where information is sent
• Not checking where information is came from
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Debate

• How valid are these tests?
• Not a substitute for good, thorough specification, rigorous design, careful and 

correct implementation, meticulous testing
• Very valuable a posteriori testing technique

• Ideally unnecessary, but in practice very necessary

• Finds errors introduced due to interactions with users, environment
• Especially errors from incorrect maintenance and operation
• Examines system, site through eyes of attacker
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Problems

• Flaw Hypothesis Methodology depends on caliber of testers to 
hypothesize and generalize flaws
• Flaw Hypothesis Methodology does not provide a way to examine 

system systematically
• Vulnerability classification schemes help here
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