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Behavioral Analysis

• Run suspected malware in a confined area, typically a sandbox, that 
simulates environment it will execute in
• Monitor it for some time period
• Look for anything considered “bad”; if it occurs, flag this as malware
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Example: Panorama

• Loads suspected malware into a Windows system, which is itself loaded 
into Panorama and run
• Files belonging to suspect program are marked

• Test engine sends “sensitive” information to trusted application on 
Windows
• Taint engine monitors flow of information around system

• So when suspect program and trusted application run, behavior of information can 
be recorded in taint graphs

• Malware detection engine analyzes taint graphs for suspicious behavior
• Experimentally, Panorama tested against 42 malware samples, 56 benign 

samples; no false negatives, 3 false positives
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Evasion

Malware can try to ensure malicious activity not triggered in analysis 
environment
• Wait for a (relatively) long time
• Wait for a particular input or external event
• Identify malware is running in constrained environment
• Check various descriptor tables
• Run sequence of instructions that generate an exception if not in a virtual 

machine (in 2010, estimates found 2.13% of malware samples did this)
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Data vs. Instructions

• Malicious logic is both
• Virus: written to program (data); then executes (instructions)

• Approach: treat “data” and “instructions” as separate types, and 
require certifying authority to approve conversion
• Key are assumption that certifying authority will not make mistakes and 

assumption that tools, supporting infrastructure used in certifying process are 
not corrupt
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Example: Duff and UNIX

• Observation: users with execute permission usually have read 
permission, too
• So files with “execute” permission have type “executable”; those without it, 

type “data”
• Executable files can be altered, but type immediately changed to “data”

• Implemented by turning off execute permission
• Certifier can change them back

• So virus can spread only if run as certifier
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Containment

• Basis: a user (unknowingly) executes malicious logic, which then 
executes with all that user’s privileges
• Limiting accessibility of objects should limit spread of malicious logic and 

effects of its actions

• Approach draws on mechanisms for confinement
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Information Flow Metrics

• Idea: limit distance a virus can spread
• Flow distance metric fd(x):
• Initially, all information x has fd(x) = 0
• Whenever information y is shared, fd(y) increases by 1
• Whenever y1, …, yn used as input to compute z, fd(z) = max(fd(y1), …, fd(yn))

• Information x accessible if and only if for some parameter V, fd(x) < V
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Example

• Anne: VA = 3; Bill, Cathy: VB = VC = 2
• Anne creates program P containing virus
• Bill executes P
• P tries to write to Bill’s program Q; works, as fd(P) = 0, so fd(Q) = 1 < VB

• Cathy executes Q
• Q tries to write to Cathy’s program R; fails, as fd(Q) = 1, so fd(R) would be 2

• Problem: if Cathy executes P, R can be infected
• So, does not stop spread; slows it down greatly, though
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Implementation Issues

• Metric associated with information, not objects
• You can tag files with metric, but how do you tag the information in them?
• This inhibits sharing

• To stop spread, make V = 0
• Disallows sharing
• Also defeats purpose of multi-user systems, and is crippling in scientific and 

developmental environments
• Sharing is critical here
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Reducing Protection Domain

• Application of principle of least privilege
• Basic idea: remove rights from process so it can only perform its 

function
• Warning: if that function requires it to write, it can write anything
• But you can make sure it writes only to those objects you expect
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Example: ACLs and C-Lists

• s1 owns file f1 and s2 owns program p2 and file f3
• Suppose s1 can read, write f1, execute p2, write f3
• Suppose s2 can read, write, execute p2 and read f3

• s1 needs to run p2 
• p2 contains Trojan horse

• So s1 needs to ensure p12 (subject created when s1 runs p2) can’t write to f3
• Ideally, p12 has capability { (s1, p2, x ) } so no problem

• In practice, p12 inherits s1’s rights, so it can write to f3—bad! Note s1 does not own f3, so 
can’t change its rights over f3 

• Solution: restrict access by others
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Authorization Denial Subset

• Defined for each user si

• Contains ACL entries that others cannot exercise over objects si owns
• In example: R(s2) = { (s1, f3, w) }
• So when p12 tries to write to f3, as p12 owned by s1 and f3 owned by s2, system 

denies access

• Problem: how do you decide what should be in your authorization 
denial subset?
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Karger’s Scheme

• Base it on attribute of subject, object
• Interpose a knowledge-based subsystem to determine if requested 

file access reasonable
• Sits between kernel and application

• Example: UNIX C compiler
• Reads from files with names ending in “.c”, “.h”
• Writes to files with names beginning with “/tmp/ctm” and assembly files with 

names ending in “.s”

• When subsystem invoked, if C compiler tries to write to “.c” file, 
request rejected
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Lai and Gray

• Implemented modified version of Karger’s scheme on UNIX system
• Allow programs to access (read or write) files named on command line
• Prevent access to other files

• Two types of processes
• Trusted: no access checks or restrictions
• Untrusted: valid access list (VAL) controls access and is initialized to command 

line arguments plus any temporary files that the process creates
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File Access Requests

1. If file on VAL, use effective UID/GID of process to determine if 
access allowed

2. If access requested is read and file is world-readable, allow access
3. If process creating file, effective UID/GID controls allowing creation

• Enter file into VAL as NNA (new non-argument); set permissions so no other 
process can read file

4. Ask user. If yes, effective UID/GID controls allowing access; if no, 
deny access
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Example

• Assembler invoked from compiler
• as x.s /tmp/ctm2345
•  and creates temp file /tmp/as1111
• VAL is
• x.s /tmp/ctm2345 /tmp/as1111

• Now Trojan horse tries to copy x.s to another file
• On creation, file inaccessible to all except creating user so attacker cannot 

read it (rule 3)
• If file created already and assembler tries to write to it, user is asked (rule 4), 

thereby revealing Trojan horse 
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Trusted Programs

• No VALs applied here
• UNIX command interpreters: csh, sh
• Program that spawn them: getty, login
• Programs that access file system recursively: ar, chgrp, chown, diff, du, dump, 
find, ls, restore, tar
• Programs that often access files not in argument list: binmail, cpp, dbx, mail, 
make, script, vi
• Various network daemons: fingerd, ftpd, sendmail, talkd, telnetd, tftpd
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Specifications

• Treat infection, execution phases of malware as errors
• Example
• Break programs into sequences of non-branching instructions
• Checksum each sequence, encrypt it, store it
• When program is run, processor recomputes checksums, and at each branch 

compares with precomputed value; if they differ, an error has occurred
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N-Version Programming

• Implement several different versions of algorithm
• Run them concurrently
• Check intermediate results periodically
• If disagreement, majority wins

• Assumptions
• Majority of programs not infected
• Underlying operating system secure
• Different algorithms with enough equal intermediate results may be 

infeasible
• Especially for malicious logic, where you would check file accesses
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Inhibit Sharing

• Use separation implicit in integrity policies
• Example: LOCK keeps single copy of shared procedure in memory
• Master directory associates unique owner with each procedure, and with 

each user a list of other users the first trusts
• Before executing any procedure, system checks that user executing procedure 

trusts procedure owner
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Multilevel Policies

• Put programs at the lowest security level, all subjects at higher levels
• By *-property, nothing can write to those programs
• By ss-property, anything can read (and execute) those programs

• Example: Trusted Solaris system
• All executables, trusted data stored below user region, so user applications 

cannot alter them
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Proof-Carrying Code

• Code consumer (user) specifies safety requirement
• Code producer (author) generates proof code meets this requirement
• Proof integrated with executable code
• Changing the code invalidates proof

• Binary (code + proof) delivered to consumer
• Consumer validates proof
• Example statistics on Berkeley Packet Filter: proofs 300–900 bytes, 

validated in 0.3 –1.3 ms
• Startup cost higher, runtime cost considerably shorter
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Detecting Statistical Changes

• Example: application had 3 programmers working on it, but statistical 
analysis shows code from a fourth person—may be from a Trojan 
horse or virus!
• Or libraries …

• Other attributes: more conditionals than in original; look for identical 
sequences of bytes not common to any library routine; increases in 
file size, frequency of writing to executables, etc.
• Denning: use intrusion detection system to detect these
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Entropy for Information Flow

• Random variables
• Joint probability
• Conditional probability
• Entropy (or uncertainty in bits)
• Joint entropy
• Conditional entropy
• Applying it to secrecy of ciphers
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Random Variable

• Variable that represents outcome of an event
• X represents value from roll of a fair die; probability for rolling n: p(X=n) = 1/6
• If die is loaded so 2 appears twice as often as other numbers, p(X=2) = 2/7 

and, for n ≠ 2,  p(X=n) = 1/7

• Note: p(X) means specific value for X doesn’t matter
• Example: all values of X are equiprobable
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Joint Probability

• Joint probability of X and Y, p(X, Y), is probability that X and Y 
simultaneously assume particular values
• If X, Y independent, p(X, Y) = p(X)p(Y)

• Roll die, toss coin
• p(X=3, Y=heads) = p(X=3)p(Y=heads) = 1/6 ´ 1/2 = 1/12
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Two Dependent Events

• X = roll of red die, Y = sum of red, blue die rolls

• Formula:
p(X=1, Y=11) = p(X=1)p(Y=11) = (1/6)(2/36) = 1/108

• But if the red die (X) rolls 1, the most their sum (Y) can be is 7
• The problem is X and Y are dependent

p(Y=2) = 1/36 p(Y=3) = 2/36 p(Y=4) = 3/36 p(Y=5) = 4/36
p(Y=6) = 5/36 p(Y=7) = 6/36 p(Y=8) = 5/36 p(Y=9) = 4/36
p(Y=10) = 3/36 p(Y=11) = 2/36 p(Y=12) = 1/36
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Conditional Probability

• Conditional probability of X given Y, p(X | Y), is probability that X takes 
on a particular value given Y has a particular value
• Continuing example …
• p(Y=7 | X=1) = 1/6
• p(Y=7 | X=3) = 1/6
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Relationship

• p(X, Y) = p(X | Y) p(Y) = p(X) p(Y | X)
• Example:

p(X=3,Y=8) = p(X=3|Y=8) p(Y=8) = (1/5)(5/36) = 1/36

• Note: if X, Y independent:
p(X|Y) = p(X)
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Entropy

• Uncertainty of a value, as measured in bits
• Example: X value of fair coin toss; X could be heads or tails, so 1 bit of 

uncertainty
• Therefore entropy of X is H(X) = 1

• Formal definition: random variable X, values x1, …, xn; so
 Si p(X = xi) = 1; then entropy is:

 H(X) = –Si p(X=xi) lg p(X=xi)
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Heads or Tails?

• H(X) = – p(X=heads) lg p(X=heads) – p(X=tails) lg p(X=tails)
  = – (1/2) lg (1/2) – (1/2) lg (1/2)
  = – (1/2) (–1) – (1/2) (–1) = 1
• Confirms previous intuitive result 
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n-Sided Fair Die

H(X) = –Si p(X = xi) lg p(X = xi)
As p(X = xi) = 1/n, this becomes
H(X) = –Si (1/n) lg (1/ n) = –n(1/n) (–lg n)
so
H(X) = lg n
which is the number of bits in n, as expected
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Ann, Pam, and Paul

Ann, Pam twice as likely to win as Paul
W represents the winner. What is its entropy?
• w1 = Ann, w2 = Pam, w3 = Paul
• p(W=w1) = p(W=w2) = 2/5, p(W=w3) = 1/5

• So H(W) = –Si p(W=wi) lg p(W=wi)
 = – (2/5) lg (2/5) – (2/5) lg (2/5) – (1/5) lg (1/5)
 = – (4/5) + lg 5 ≈ –1.52
• If all equally likely to win, H(W) = lg 3 ≈ 1.58
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Joint Entropy

• X takes values from { x1, …, xn }, and Si p(X=xi) = 1
• Y takes values from { y1, …, ym }, and Si p(Y=yi) = 1
• Joint entropy of X, Y is:

H(X, Y) = –Sj Si p(X=xi, Y=yj) lg p(X=xi, Y=yj)
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Example

X: roll of fair die, Y: flip of coin
As X, Y are independent:
 p(X=1, Y=heads) = p(X=1) p(Y=heads) = 1/12
and
H(X, Y) = –Sj Si p(X=xi, Y=yj) lg p(X=xi, Y=yj)
              = –2 [ 6 [ (1/12) lg (1/12) ] ] = lg 12
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Conditional Entropy (Equivocation)

• X takes values from { x1, …, xn }  and Si p(X=xi) = 1
• Y takes values from { y1, …, ym } and Si p(Y=yi) = 1
• Conditional entropy of X given Y=yj is:

H(X | Y=yj) = –Si p(X=xi | Y=yj) lg p(X=xi | Y=yj)
• Conditional entropy of X given Y is:

H(X | Y) = –Sj p(Y=yj) Si p(X=xi | Y=yj) lg p(X=xi | Y=yj)
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Example

• X roll of red die, Y sum of red, blue roll
• Note p(X=1|Y=2) = 1, p(X=i|Y=2) = 0 for i ≠ 1
• If the sum of the rolls is 2, both dice were 1

• Thus
H(X|Y=2) = –Si p(X=xi|Y=2) lg p(X=xi|Y=2) = 0
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Example (con’t)

• Note p(X=i, Y=7) = 1/6
• If the sum of the rolls is 7, the red die can be any of 1, …, 6 and the blue die 

must be 7–roll of red die

• H(X|Y=7) = –Si p(X=xi|Y=7) lg p(X=xi|Y=7)
                      = –6 (1/6) lg (1/6) = lg 6
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Example: Perfect Secrecy

• Cryptography: knowing the ciphertext does not decrease the 
uncertainty of the plaintext
• M = { m1, …, mn } set of messages
• C = { c1, …, cn } set of messages
• Cipher ci = E(mi) achieves perfect secrecy if H(M | C) = H(M)

ECS 235A, Computer and Information Security Slide 40November 13, 2024



Basics of Information Flow

• Bell-LaPadula Model embodies information flow policy
• Given compartments A, B, info can flow from A to B iff B dom A

• So does Biba Model
• Given compartments A, B, info can flow from A to B iff A dom B

• Variables x, y assigned compartments x, y as well as values
• Confidentiality (Bel-LaPadula): if x = A, y = B, and B dom A, then y := x allowed 

but not x := y
• Integrity (Biba): if x = A, y = B, and A dom B, then x := y allowed but not y := x

• For now, focus on confidentiality (Bell-LaPadula)
• We’ll get to integrity later
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Entropy and Information Flow

• Idea: information flows from x to y as a result of a sequence of 
commands c if you can deduce information about x before c from the 
value in y after c
• Formally:
• s time before execution of c, t time after
• H(xs | yt) < H(xs | ys)
• If no y at time s, then H(xs | yt) < H(xs)
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Example 1

• Command is x := y + z; where:
• x does not exist initially (that is, has no value)
• 0 ≤ y ≤ 7, equal probability
• z = 1 with probability 1/2, z = 2 or 3 with probability 1/4 each

• s state before command executed; t, after; so
• H(ys) = H(yt) = –8(1/8) lg (1/8) = 3

• You can show that H(ys | xt) = (3/32) lg 3 + 9/8 ≈ 1.274 < 3 = H(ys)
• Thus, information flows from y to x
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Example 2

• Command is
if x = 1 then y := 0 else y := 1;

 where x, y equally likely to be either 0 or 1
• H(xs) = 1 as x can be either 0 or 1 with equal probability
• H(xs | yt) = 0 as if yt = 1 then xs = 0 and vice versa
• Thus, H(xs | yt) = 0 < 1 = H(xs)

• So information flowed from x to y
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Implicit Flow of Information

• Information flows from x to y without an explicit assignment of the 
form y := f(x)
• f(x) an arithmetic expression with variable x

• Example from previous slide:
if x = 1 then y := 0 else y := 1;

• So must look for implicit flows of information to analyze program
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Notation

• x means class of x
• In Bell-LaPadula based system, same as “label of security compartment to 

which x belongs”

• x ≤ y means “information can flow from an element in class of x to an 
element in class of y
• Or, “information with a label placing it in class x can flow into class y”
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