
Lecture 22
November 18, 2024

ECS 235A, Computer and Information SecurityNovember 18, 2024 Slide 1

Execution-Based Mechanisms

• Detect and stop flows of information that violate policy
• Done at run time, not compile time

• Obvious approach: check explicit flows
• Problem: assume for security, x ≤ y

if x = 1 then y := a;
• When x ≠ 1, x = High, y = Low, a = Low, appears okay—but implicit flow

violates condition!

November 18, 2024 ECS 235A, Computer and Information Security Slide 2

Fenton’s Data Mark Machine

• Each variable has an associated class
• Program counter (PC) has one too
• Idea: branches are assignments to PC, so you can treat implicit flows

as explicit flows
• Stack-based machine, so everything done in terms of pushing onto

and popping from a program stack

November 18, 2024 ECS 235A, Computer and Information Security Slide 3

Instruction Description

• skip: instruction not executed
• push(x, x): push variable x and its security class x onto program

stack
• pop(x, x) : pop top value and security class from program stack,

assign them to variable x and its security class x respectively

November 18, 2024 ECS 235A, Computer and Information Security Slide 4

Instructions

• x := x + 1 (increment)
• Same as:
 if PC ≤ x then x := x + 1 else skip

• if x = 0 then goto n else x := x – 1 (branch and save PC on
stack)
• Same as:
 if x = 0 then begin
 push(PC, PC); PC := lub{PC, x}; PC := n;
 end else if PC ≤ x then
 x := x - 1
 else
 skip;

November 18, 2024 ECS 235A, Computer and Information Security Slide 5

More Instructions

• if’ x = 0 then goto n else x := x – 1 (branch without
saving PC on stack)
• Same as:
 if x = 0 then
 if x ≤ PC then PC := n else skip
 else
 if PC ≤ x then x := x - 1 else skip

November 18, 2024 ECS 235A, Computer and Information Security Slide 6

More Instructions

• return (go to just after last if)
• Same as:
 pop(PC, PC);

• halt (stop)
• Same as:
 if program stack empty then halt
• Note stack empty to prevent user obtaining information from it after halting

November 18, 2024 ECS 235A, Computer and Information Security Slide 7

Example Program

1 if x = 0 then goto 4 else x := x - 1
2 if z = 0 then goto 6 else z := z - 1
3 halt
4 z := z + 1
5 return
6 y := y + 1
7 return

Initially x = 0 or x = 1, y = 0, z = 0
Program copies value of x to y

November 18, 2024 ECS 235A, Computer and Information Security Slide 8

Example Execution: Initial Setting

x y z PC PC stack check
1 0 0 1 Low —

November 18, 2024 ECS 235A, Computer and Information Security Slide 9

Example Execution: Step 1

x y z PC PC stack check
1 0 0 1 Low —
0 0 0 2 Low — Low ≤ x
if x = 0 then goto 4 else x := x – 1

November 18, 2024 ECS 235A, Computer and Information Security

if x = 0 then begin
 push(PC, PC); PC := lub{PC, x}; PC := n;
end else if PC ≤ x then
 x := x - 1
else
 skip;

Slide 10

Example Execution: Step 2

x y z PC PC stack check
1 0 0 1 Low —
0 0 0 2 Low — Low ≤ x
0 0 0 6 z (3, Low) PC ≤ y
if z = 0 then goto 6 else z := z - 1

November 18, 2024 ECS 235A, Computer and Information Security

if z = 0 then begin
 push(PC, PC); PC := lub{PC, z}; PC := n;
end else if PC ≤ z then
 z := z - 1
else
 skip;

Slide 11

Example Execution: Step 3
x y z PC PC stack check
1 0 0 1 Low —
0 0 0 2 Low — Low ≤ x
0 0 0 6 z (3, Low) PC ≤ y
0 1 0 7 z (3, Low)
y := y + 1

November 18, 2024 ECS 235A, Computer and Information Security

if PC ≤ y then y := y + 1 else skip

Slide 12

Example Execution: Step 4

x y z PC PC stack check
1 0 0 1 Low —
0 0 0 2 Low — Low ≤ x
0 0 0 6 z (3, Low) PC ≤ y
0 1 0 7 z (3, Low)
return

November 18, 2024 ECS 235A, Computer and Information Security

pop(PC, PC);

Slide 13

Example Execution: Step 5

x y z PC PC stack check
1 0 0 1 Low —
0 0 0 2 Low — Low ≤ x
0 0 0 6 z (3, Low) PC ≤ y
0 1 0 7 z (3, Low)
0 1 0 3 Low —
halt

November 18, 2024 ECS 235A, Computer and Information Security

if program stack empty then halt

Slide 14

Handling Errors

• Ignore statement that causes error, but continue execution
• If aborted or a visible exception taken, user could deduce information
• Means errors cannot be reported unless user has clearance at least equal to

that of the information causing the error

November 18, 2024 ECS 235A, Computer and Information Security Slide 15

Variable Classes

• Up to now, classes fixed
• Check relationships on assignment, etc.

• Consider variable classes
• Fenton’s Data Mark Machine does this for PC
• On assignment of form y := f(x1, …, xn), y changed to lub{ x1, …, xn }
• Need to consider implicit flows, also

November 18, 2024 ECS 235A, Computer and Information Security Slide 16

Example Program

(* Copy value from x to y. Initially, x is 0 or 1 *)
proc copy(x: integer class { x };
 var y: integer class { y })
var z: integer class variable { Low };
begin
 y := 0;
 z := 0;
 if x = 0 then z := 1;
 if z = 0 then y := 1;
end;
• z changes when z assigned to
• Assume y < x (that is, x strictly dominates y; they are not equal)

November 18, 2024 ECS 235A, Computer and Information Security Slide 17

Analysis of Example

• x = 0
• z := 0 sets z to Low
• if x = 0 then z := 1 sets z to 1 and z to x
• So on exit, y = 0

• x = 1
• z := 0 sets z to Low
• if z = 0 then y := 1 sets y to 1 and checks that lub{Low, z} ≤ y
• So on exit, y = 1

• Information flowed from x to y even though y < x

November 18, 2024 ECS 235A, Computer and Information Security Slide 18

Handling This (1)

• Fenton’s Data Mark Machine detects implicit flows violating
certification rules

November 18, 2024 ECS 235A, Computer and Information Security Slide 19

Handling This (2)

• Raise class of variables assigned to in conditionals even when branch
not taken
• Also, verify information flow requirements even when branch not

taken
• Example:
• In if x = 0 then z := 1, z raised to x whether or not x = 0
• Certification check in next statement, that z ≤ y, fails, as z = x from previous

statement, and y < x

November 18, 2024 ECS 235A, Computer and Information Security Slide 20

Handling This (3)

• Change classes only when explicit flows occur, but all flows (implicit
as well as explicit) force certification checks
• Example
• When x = 0, first if sets z to Low, then checks x ≤ z
• When x = 1, first if checks x ≤ z
• This holds if and only if x = Low

• Not possible as y < x = Low by assumption and there is no class that Low strictly
dominates

November 18, 2024 ECS 235A, Computer and Information Security Slide 21

Integrity Mechanisms

• The above also works with Biba, as it is mathematical dual of Bell-
LaPadula
• All constraints are simply duals of confidentiality-based ones

presented above

November 18, 2024 ECS 235A, Computer and Information Security Slide 22

Example 1

For information flow of assignment statement:
y := f(x1, …, xn)

the relation glb{ x1, …, xn } ≥ y must hold
• Why? Because information flows from x1, …, xn to y, and under Biba,

information must flow from a higher (or equal) class to a lower one

November 18, 2024 ECS 235A, Computer and Information Security Slide 23

Example 2

For information flow of conditional statement:
if f(x1, …, xn) then S1; else S2; end;

then the following must hold:
• S1, S2 must satisfy integrity constraints
• glb{ x1, …, xn } ≥ lub{y | y target of assignment in S1, S2 }

November 18, 2024 ECS 235A, Computer and Information Security Slide 24

Example Information Flow Control Systems

• Privacy and Android Cell Phones
• Analyzes data being sent from the phone

• Firewalls

November 18, 2024 ECS 235A, Computer and Information Security Slide 25

Privacy and Android Cell Phones

• Many commercial apps use advertising libraries to monitor clicks,
fetch ads, display them
• So they send information, ostensibly to help tailor advertising to you

• Many apps ask to have full access to phone, data
• This is because of complexity of permission structure of Android system

• Ads displayed with privileges of app
• And if they use Javascript, that executes with those privileges
• So if it has full access privilege, it can send contact lists, other information to

others
• Information flow problem as information is flowing from phone to

external party

November 18, 2024 ECS 235A, Computer and Information Security Slide 26

Analyzing Android Flows

• Android based on Linux
• App executables in bytecode format (Dalvik executables, or DEX) and run in

Dalvik VM
• Apps event driven
• Apps use system libraries to do many of their functions
• Binder subsystem controls interprocess communication

• Analysis uses 2 security levels, untainted and tainted
• No categories, and tainted < untainted

November 18, 2024 ECS 235A, Computer and Information Security Slide 27

TaintDroid: Checking Information Flows

• All objects tagged tainted or untainted
• Interpreters, Binder augmented to handle tags

• Android native libraries trusted
• Those communicating externally are taint sinks

• When untrusted app invokes a taint sink library, taint tag of data is recorded
• Taint tags assigned to external variables, library return values

• These are assigned based on knowledge of what native code does

• Files have single taint tag, updated when file is written
• Database queries retrieve information, so tag determined by database query

responder

November 18, 2024 ECS 235A, Computer and Information Security Slide 28

TaintDroid: Checking Information Flows

• Information from phone sensor may be sensitive; if so, tainted
• TaintDroid determines this from characteristics of information

• Experiment 1 (2010): selected 30 popular apps out of a set of 358
that required permission to access Internet, phone location, camera,
or microphone; also could access cell phone information
• 105 network connections accessed tainted data
• 2 sent phone identification information to a server
• 9 sent device identifiers to third parties, and 2 didn’t tell user
• 15 sent location information to third parties, none told user
• No false positives

November 18, 2024 ECS 235A, Computer and Information Security Slide 29

TaintDroid: Checking Information Flows

• Experiment 2 (2012): revisited 18 out of the 30 apps (others did not
run on current version of Android)
• 3 still sent location information to third parties
• 8 sent device identification information to third parties without consent

• 3 of these did so in 2010 experiment
• 5 were new

• 2 new flows that could reveal tainted data
• No false positives

November 18, 2024 ECS 235A, Computer and Information Security Slide 30

Firewalls

• Host that mediates access to a network
• Allows, disallows accesses based on configuration and type of access

• Example: block Conficker worm
• Conficker connects to botnet, which can use system for many purposes

• Spreads through a vulnerability in a particular network service
• Firewall analyze packets using that service remotely, and look for Conficker

and its variants
• If found, packets discarded, and other actions may be taken

• Conficker also generates list of host names, tried to contact botnets at those
hosts
• As set of domains known, firewall can also block outbound traffic to those hosts

November 18, 2024 ECS 235A, Computer and Information Security Slide 31

Filtering Firewalls

• Access control based on attributes of packets and packet headers
• Such as destination address, port numbers, options, etc.
• Also called a packet filtering firewall
• Does not control access based on content
• Examples: routers, other infrastructure systems

November 18, 2024 ECS 235A, Computer and Information Security Slide 32

Proxy

• Intermediate agent or server acting on behalf of endpoint without
allowing a direct connection between the two endpoints
• So each endpoint talks to proxy, thinking it is talking to other endpoint
• Proxy decides whether to forward messages, and whether to alter them

November 18, 2024 ECS 235A, Computer and Information Security Slide 33

Proxy Firewall

• Access control done with proxies
• Usually bases access control on content as well as source, destination

addresses, etc.
• Also called an applications level or application level firewall
• Example: virus checking in electronic mail

• Incoming mail goes to proxy firewall
• Proxy firewall receives mail, scans it
• If no virus, mail forwarded to destination
• If virus, mail rejected or disinfected before forwarding

November 18, 2024 ECS 235A, Computer and Information Security Slide 34

Example

• Want to scan incoming email for malware
• Firewall acts as recipient, gets packets making up message and

reassembles the message
• It then scans the message for malware
• If none, message forwarded
• If some found, mail is discarded (or some other appropriate action)

• As email reassembled at firewall by a mail agent acting on behalf of
mail agent at destination, it’s a proxy firewall (application layer
firewall)

November 18, 2024 ECS 235A, Computer and Information Security Slide 35

Stateful Firewall

• Keeps track of the state of each connection
• Similar to a proxy firewall
• No proxies involved, but this can examine contents of connections
• Analyzes each packet, keeps track of state
• When state indicates an attack, connection blocked or some other

appropriate action taken

November 18, 2024 ECS 235A, Computer and Information Security Slide 36

Network Organization: DMZ

• DMZ is portion of network separating a purely internal network from
external network
• Usually put systems that need to connect to the Internet here
• Firewall separates DMZ from purely internal network
• Firewall controls what information is allowed to flow through it
• Control is bidirectional; it control flow in both directions

November 18, 2024 ECS 235A, Computer and Information Security Slide 37

One Setup of DMZ

One dual-homed firewall that
routes messages to internal
network or DMZ as
appropriate

firewall internal
network

DMZ

Internet

November 18, 2024 ECS 235A, Computer and Information Security Slide 38

Another Setup of DMZ

Two firewalls, one (outer
firewall) connected to the
Internet, the other (inner
firewall) connected to internal
network, and the DMZ is
between the firewalls

outer
firewall

internal
network

DMZ

Internet

inner
firewall

November 18, 2024 ECS 235A, Computer and Information Security Slide 39

Attacks

• Attack: a sequence of actions creating a violation of a security policy
• Multistage attack: attack requiring several steps to achieve its goal

• Goal of the attack: what the attacker hopes to achieve
• Target of the attack: entity that the attacker wishes to affect
• Example: burglar stealing someone’s jewelry
• Attack: what she does to steal the jewelry; probably multistage (break

window, find jewelry box, break it open, take jewelry, get out of house)
• Goal of the attack: steal the jewelry
• Target of the attack: the jewelry, also the owner of the jewelry

November 18, 2024 ECS 235A, Computer and Information Security Slide 40

Representing Attacks

• Can be done at many levels of abstraction
• As you go deeper, some steps become more detailed and break down

into multiple steps themselves
• Subgoal: the goal of each step to move the attacker closer to the goal

of the attack

November 18, 2024 ECS 235A, Computer and Information Security Slide 41

Example: Penetration of Corporate Computer
System
• Goal: gain access to corporate computer system
• Procedure was to try to get people to reveal account information,

change passwords to something the attackers knew
• Target: newly-hired employees who hadn’t had computer security awareness

briefing
• Subgoal 1: find those people
• Subgoal 2: get them to reveal account info, change passwords

November 18, 2024 ECS 235A, Computer and Information Security Slide 42

Focus on Subgoal 1

• For subgoal 1, needed to find list of these people
• Subgoal 1-1: learn about company’s organization

• Procedure was to get annual report (public), telephone directory (not
public)
• Subgoal 1-2: acquire the telephone directory (this required 2 numbers)
• Subgoal 1-3: get the two numbers (only available to employees)
• Subgoal 1-4: impersonate employees

• Had corporate controls blocked attackers from achieving subgoal,
they would need to find other ways of doing it

November 18, 2024 ECS 235A, Computer and Information Security Slide 43

Attack Trees

• Represent the goals and subgoals as a sequence of hierarchical nodes
in a tree
• Goal is the root

November 18, 2024 ECS 235A, Computer and Information Security Slide 44

Security Flaws in Cryptographic Key
Management Schemes
• Goal: develop package to allow attackers to ask what data is needed

to determine encryption key
• System has only 2 functions, c = Ek(m) and m = Dk(c)
• Attack (“search”) tree has the required information represented as

root node, other nodes represent subgoals
• 2 types of nodes
• Required: represents information necessary for parent; satisfied when that

information becomes available
• Available: represents known information

• As tree constructed, find leaf nodes that are required (using breadth-
first search), construct additional layer

November 18, 2024 ECS 235A, Computer and Information Security Slide 45

Example

• Assume Sage knows Ek(m), Ekʹ(k), kʹ
• Nodes for these are available nodes

• Goal: determine m
• Node representing m is required

node

• Tree construction:
• To get m, use k to decrypt Ek(m) (left

tree)
• To get k, determine if it is encrypted

and if so, try to decrypt it (right tree)

• Now all leaves are available nodes k Ek(m)

m

kʹ Ekʹ(k)

k Ek(m)

m

November 18, 2024 ECS 235A, Computer and Information Security Slide 46

Schneier’s Attack Trees

• Two types of nodes
• And nodes require all children to be satisfied before it is satisfied
• Or nodes require at least 1 of its children to be satisfied before it is satisfied
• Weight of node indicates some relevant characteristic, like difficulty of satisfying

node
• Weights of interior nodes depend upon weights of child nodes
• Weights of leaf nodes assigned externally

• Goal represented as root node of set of tree
• Determine the steps needed to satisfy the goal

• These become children of the root
• Repeat that step for each child

• Stop when leaf nodes are at appropriate level of abstraction

November 18, 2024 ECS 235A, Computer and Information Security Slide 47

Example: Reading PGP-Encrypted Message

• Sage wants to read message Skyler sends to Caroline
• Five ways:

1. Read message before Skyler encrypts it
2. Read message after Caroline decrypts it
3. Break encryption used to encrypt message
4. Determine symmetric key used to encrypt message
5. Obtain Caroline’s private key

• Focus on 2, read message after Caroline decrypts it

November 18, 2024 ECS 235A, Computer and Information Security Slide 48

Beginning the Tree

1.Read message after Caroline
decrypts it
a. Monitor Caroline’s outgoing mail; or
b. Add a “Reply-To:” header (or change

an existing one); or
c. Compromise Caroline’s computer and

read the decrypted message
i. Compromise Caroline’s computer; and
ii. Read the decrypted message

1

a b c

i ii

November 18, 2024 ECS 235A, Computer and Information Security Slide 49

Next Layer

i. Read message after Caroline
decrypts it
a. Copy decrypted message from

memory; or
b. Copy decrypted message from

secondary storage; or
c. Copy decrypted message from

backup; or
d. Monitor network to observe Caroline

sending the plaintext message; or
e. Use a Van Eyk device to monitor the

display of the message on Caroline’s
screen as it is displayed there

i

a b c d e

November 18, 2024 ECS 235A, Computer and Information Security Slide 50

Textual Representation
1. Read a message that Skyler is sending to Caroline. (OR)
 1.1. Read the message before Skyler encrypts it.
 1.2. Read the message after Caroline decrypts it. (OR)
 1.2.1. Monitor Caroline’s outgoing mail.
 1.2.2. Add a “Reply-To” field to the header (or change the address in the existing “Reply-To” field).
 1.2.3. Compromise Caroline’s computer and read the decrypted message. (AND)
 1.2.3.1. Compromise Caroline’s computer. (OR)
 1.2.3.1.1. Copy decrypted message from memory.
 1.2.3.1.2. Copy decrypted message from secondary storage.
 1.2.3.1.3. Copy decrypted message from backup.
 1.2.3.1.4. Monitor network to observe Caroline sending the cleartext message.
 1.2.3.1.5. Use a Van Eck device to monitor the display of the message on Caroline’s monitor as it is displayed.
 1.2.3.2. Read the decrypted message.
 1.3. Break the encryption used to encrypt the message.
 1.4. Determine the symmetric key used to encrypt the message.
 1.5. Obtain Caroline’s private key.

November 18, 2024 ECS 235A, Computer and Information Security Slide 51

Requires/Provides Model

• Generalization of attack trees
• Based on capabilities, semantic objects encapsulating semantically

typed attributes
• Represent information or a situation to advance an attack

• Concept is a set C of capabilities and a mapping from C to another set
of capabilities that are provided
• Description of subgoal of attack
• Attacker has a set of required capabilities R to reach subgoal; it then acquires

a set P of provided capabilities

November 18, 2024 ECS 235A, Computer and Information Security Slide 52

Concept

• Concept is a set R of capabilities
and a mapping from R to
another set P of capabilities that
are provided
• Description of subgoal of attack

• Interpretation: attacker has a set
of required capabilities R to
reach subgoal; it then acquires a
set P of provided capabilities

R = P1 ∪ P2

P

P1
P2

November 18, 2024 ECS 235A, Computer and Information Security Slide 53

Concept

• Captures effect of attack
• How the attack works (ie, how capabilities are required) irrelevant to concept;

that attacker has them is what matters

• Moves away from having to know every method of attack to get to a
step
• Concept embodies the step, so all model needs is required capabilities

• Can compose attacks based solely on effects and not methods of
attack

November 18, 2024 ECS 235A, Computer and Information Security Slide 54

Example: rsh Attack

1. attacker launches a DoS against
trusted

2. attacker sends victim forged SYN,
apparently from trusted

3. victim sends SYN/ACK to trusted
4. It never gets there due to DoS
5. attacker sends forged SYN/ACK to

trusted, with command in data
segment of packet
• Need to know right sequence number
• If so, causes command to be executed as

though trusted requested it

attacker trusted

victim

1

2
5 3

4

November 18, 2024 ECS 235A, Computer and Information Security Slide 55

Example: rsh Attack

• Requires capability: blocking of a connection between the trusted and
victim hosts
• Contains source address, destination address
• Also time interval indicating when communication is blocked (ie, when the

DoS attack is under way, and how long it lasts)

• Provides capability: execute command on victim host as if command
were from trusted host
• Concept: spoof trusted host to victim host

November 18, 2024 ECS 235A, Computer and Information Security Slide 56

