Outline for January 15, 2008

1. Take-Grant

- a. Counterpoint to HRU result
- b. Symmetry of take and grant rights
- c. Islands (maximal subject-only tg-connected subgraphs)
- d. Bridges (as a combination of terminal and initial spans)

2. Sharing

- a. Definition: $can \cdot share(r, \mathbf{x}, \mathbf{y}, G_0)$ true iff there exists a sequence of protection graphs $G_0, ..., G_n$ such that G_0 l-* G_n using only take, grant, create, remove rules and in G_n , there is an edge from \mathbf{x} to \mathbf{y} labeled r
- b. Theorem: $can \cdot share(r, \mathbf{x}, \mathbf{y}, G_0)$ iff there is an edge from \mathbf{x} to \mathbf{y} labeled r in G_0 , or all of the following hold:
 - i. there is a vertex y' with an edge from y' to y labeled r;
 - ii. there is a subject y'' which terminally spans to y', or y'' = y';
 - iii. there is a subject \mathbf{x}' which initially spans to \mathbf{x} , or $\mathbf{x}' = \mathbf{x}$; and
 - iv. there is a sequence of islands $I_1, ..., I_n$ connected by bridges for which \mathbf{x}' is in I_1 and \mathbf{y}' is in I_n .

3. Model Interpretation

- a. ACM very general, broadly applicable; Take-Grant more specific, can model fewer situations
- b. Theorem: G_0 protection graph with exactly one subject, no edges; R set of rights. Then G_0 l-* G iff G is a finite directed graph containing subjects and objects only, with edges labeled from nonempty subsets of R, and with at least one subject with no incoming edges
- c. Example: shared buffer managed by trusted third part

4. Stealing

- a. Definition: $can \cdot steal(r, \mathbf{x}, \mathbf{y}, G_0)$ true iff there is no edge from \mathbf{x} to \mathbf{y} labeled r in G_0 , and there exists a sequence of protection graphs $G_0, ..., G_n$ such that $G_0 \mid -* G_n$ in which:
 - i. G_n has an edge from **x** to **y** labeled r
 - ii. There is a sequence of rule applications $\varrho_1, ..., \varrho_n$ such that $G_{i-1} \vdash G_i$; and
 - iii. For all vertices \mathbf{v} , \mathbf{w} in G_{i-1} , if there is an edge from \mathbf{v} to \mathbf{y} in G_0 labeled r, then ϱ_i is not of the form " \mathbf{v} grants (r to \mathbf{y}) to \mathbf{w} "
- b. Example

Conspiracy

- a. Access set
- b. Deletion set
- c. Conspiracy graph
- d. I, T sets
- e. Theorem: $can \cdot share(r, \mathbf{x}, \mathbf{y}, G_0)$ iff there is a path from some $h(\mathbf{p}) \in I(\mathbf{x})$ to some $h(\mathbf{q}) \in T(\mathbf{y})$